[1] 康恩铭,章薇,章翔. 胶质母细胞瘤DNA甲基化研究进展[J]. 中华神经外科疾病研究杂志,2017,16(3):279-281. [2] Gallego O. Nonsurgical treatment of recurrent glioblastoma[J]. Curr Oncol, 2015, 22(4): e273-281. [3] Xiong J, Bing Z, Su Y, et al. An integrated mRNA and microRNA expression signature for glioblastoma multiforme prognosis[J]. PLoS One, 2014, 9(5): e98419. [4] Liu Z, Niu Y, Xie M, et al. Gene expression profiling analysis reveals that DLG3 is down-regulated in glioblastoma[J]. J Neurooncol, 2014, 116(3): 465-476. [5] Xing Z Y, Sun L G, Guo W J. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients[J]. Clin Neurol Neurosurg, 2015, 131: 54-58. [6] Meng D, Chen Y, Zhao Y, et al. Expression and prognostic significance of TCTN1 in human glioblastoma[J]. J Transl Med, 2014, 12: 288. [7] Jones P A. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. Nat Revi Genet, 2012, 13(7): 484-492. [8] Zhang C, Zhao H, Li J, et al. The Identification of specific methylation patterns across different cancers[J].PLoS One, 2015, 10(3): e0120361. [9] Shah N, Lin B, Sibenaller Z, et al. Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM[J]. PLoS One, 2011, 6(1): e16146. [10]Sandoval J, Heyn H, Moran S, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome[J]. Epigenetics, 2011, 6(6): 692-702. [11]Guintivano J, Aryec M J, kaminsky Z A. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression[J]. Epigenetics, 2013, 8(3): 290-302. [12]Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns[J]. Briefings Bioinform, 2017,18(5):761-773. [13]Harrow J, Frankish A, Gonzalez J M, et al. GENCODE: the reference human genome annotation for The ENCODE Project[J]. Genome Res, 2012, 22(9): 1760-1774. [14]Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2009, 26(1): 139-140. [15]Di Lena P, Sala C, Prodi A, et al. Missing value estimation methods for DNA methylation data[J]. Bioinformatics, 2019, 35(19): 3786-3793. [16]Zhi H, Ning S, Li X, et al. A novel reannotation strategy for dissecting DNA methylation patterns of human long intergenic non-coding RNAs in cancers[J]. Nucleic Acids Res, 2014, 42(13): 8258-8270. [17]Xiao W, Cao Y, Long H, et al. Genome-wide DNA methylation patterns analysis of noncoding RNAs in temporal lobe epilepsy patients[J]. Mol Neurobiol, 2018, 55(1): 793-803. [18]Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. [19]Yu G, Wang L, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. [20]王瑞娴,徐建红. 基因组DNA甲基化及组蛋白甲基化[J]. 遗传,2014,36(3): 191-199. [21]Etcheverry A, Aubry M, de Tayrac M, et al. DNA methylation in glioblastoma: impact on gene expression and clinical outcome[J]. BMC Genomics, 2010, 11: 701. [22]Ventero M P, Fuentes-Baile M, Quereda C, et al. Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3[J]. PLoS One, 2019, 14(2): e212581. [23]Ladha J, Sinha S, Bhat V, et al. Identification of genomic targets of transcription factor AEBP1 and its role in survival of glioma cells[J]. Mol Cancer Res, 2012, 10(8): 1039-1051. |