首都医科大学学报 ›› 2021, Vol. 42 ›› Issue (1): 71-76.doi: 10.3969/j.issn.1006-7795.2021.01.012

• 基础研究 • 上一篇    下一篇

胶质母细胞瘤中异常甲基化调控的蛋白编码基因识别研究

嵇江淮1, 赵潇潇1, 李乾鹏1, 安奕2,3, 赵磊2,3, 李冬果1*   

  1. 1.首都医科大学生物医学工程学院生物医学信息学系,北京 100069;
    2.首都医科大学宣武医院麻醉手术科,北京 100053;
    3.国家老年疾病临床研究中心,北京 100053
  • 收稿日期:2019-07-12 出版日期:2021-02-21 发布日期:2021-02-02
  • 基金资助:
    北京市教育委员会科技发展计划一般项目 (KM201710025010), 首都医科大学基础临床合作项目[17JL61, 17JL(TTZX)10]。

Identification of protein-coding genes regulated by aberrant methylation in glioblastoma

Ji Jianghuai1, Zhao Xiaoxiao1, Li Qianpeng1, An Yi2,3, Zhao Lei2,3, Li Dongguo1*   

  1. 1. Department of Biomedical Information, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;
    2. Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
    3. National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
  • Received:2019-07-12 Online:2021-02-21 Published:2021-02-02
  • Contact: *E-mail:ldg213@ccmu.edu.cn
  • Supported by:
    Scientific Research Common Program of Beijing Municipal Commission of Education(KM201710025010), Basic Clinical Cooperation Project of Capital Medical University[17JL61, 17JL(TTZX)10].

摘要: 目的 通过整合多组学数据,识别胶质母细胞瘤(glioblastoma, GBM)中表达受DNA甲基化调控的蛋白编码基因(protein-coding genes,PCGs),评估不同甲基化模式下PCGs的生物学功能,挖掘与GBM预后相关的风险标志物。方法 基于多组学数据,构建GBM中PCGs的DNA甲基化谱,筛选表达受异常甲基化调控的PCGs并进行功能富集分析。同时结合GBM临床数据,对筛选出的PCGs进行生存分析。结果 识别出表达受异常甲基化调控的PCGs 630个,挖掘出51个与GBM预后相关的PCGs。结论 系统识别GBM中潜在的表达受异常甲基化调控的PCGs,并对识别GBM风险标志物和潜在的治疗靶点提出了新的认识。

关键词: 胶质母细胞瘤, 蛋白编码基因, DNA甲基化, 调控, 生物标志物

Abstract: Objective By integrating multi-omics data, we identified protein-coding genes (PCGs) regulated by DNA methylation in glioblastoma (GBM), evaluated the biological functions of PCGs under different methylation patterns, and explored the risk markers associated with GBM prognosis. Methods Based on multi-omics data, we constructed the DNA methylation profiles of PCGs in GBM, screened PCGs whose expression was regulated by aberrant methylation and functional enrichment analysis. Meanwhile, we performed survival analysis of the selected PCGs by combining with GBM clinical data. Results 630 PCGs whose expression was regulated by aberrant methylation were identified, and 51 PCGs associated with GBM prognosis were excavated. Conclusions The potential PCGs whose expression were regulated by aberrant methylation were identified systematically, and we provide a novel insight for identifying GBM risk markers and potential therapeutic targets.

Key words: glioblastoma, protein-coding genes, DNA methylation, regulation, biomarkers

中图分类号: