首都医科大学学报 ›› 2022, Vol. 43 ›› Issue (4): 505-520.doi: 10.3969/j.issn.1006-7795.2022.04.001
• 专家述评 • 下一篇
周一帆1 , 姜慧敏1, 卫慧敏2, 谷雨航3, 胡文伯4, 刘璐4 , 周陈1,4*, 吉训明1,5*
收稿日期:
2022-05-26
出版日期:
2022-08-21
发布日期:
2022-10-28
基金资助:
Zhou Yifan1, Jiang Huimin1, Wei Huimin2, Gu Yuhang3, Hu Wenbo4, Liu Lu4, Zhou Chen1,4*, Ji Xunming1,5*
Received:
2022-05-26
Online:
2022-08-21
Published:
2022-10-28
Contact:
*E-mail:chenzhou2013abc@163.com, jixm@ccmu.edu.cn
Supported by:
摘要: 大脑是人体内新陈代谢最旺盛的器官,需要丰富的血液供应以维持复杂的功能活动,人脑的血液供应分为动脉系统和静脉系统,脑动脉的病理生理机制已被深入的研究,然而,目前国际上对脑静脉的基础和临床研究经验较少。脑静脉系统容纳颅内70%~80%的血容量,在保证血流灌注及代谢废物的清除、血-脑脊液屏障的完整、颅内压调节、免疫监视甚至脑膜淋巴管功能等方面的重要作用陆续被报道。脑静脉系统作为新的研究领域,其在维持脑功能稳态和各种急慢性中枢神经系统疾病方面的病理生理作用也逐渐被重视。本综述概述了脑静脉系统的解剖引流和结构特征、脑静脉的生理功能以及在中枢神经系统疾病中的病理作用,旨在为全面认识脑静脉功能,科学认识与脑静脉相关的多种中枢神经系统疾病提供一定的借鉴。
中图分类号:
周一帆, 姜慧敏, 卫慧敏, 谷雨航, 胡文伯, 刘璐, 周陈, 吉训明. 加强脑静脉研究,提升神经系统疾病诊疗水平——脑静脉系统解剖、生理和临床概述[J]. 首都医科大学学报, 2022, 43(4): 505-520.
Zhou Yifan, Jiang Huimin, Wei Huimin, Gu Yuhang, Hu Wenbo, Liu Lu, Zhou Chen, Ji Xunming. Strengthening research on the cerebral venous system improves the diagnosis and treatment of neurological diseases——anatomy, physiology, and clinical overview[J]. Journal of Capital Medical University, 2022, 43(4): 505-520.
[1] 芮德源, 朱雨岚, 陈立杰. 临床神经解剖学[M]. 2版. 北京: 人民卫生出版社, 2015. [2] Kilic T, Akakin A. Anatomy of cerebral veins and sinuses[J]. Front Neurol Neurosci, 2008, 23: 4-15. [3] Gong X Y, Higano S, Mugikura S, et al. Virtually peeling off the skull and scalp: a simple way of mapping the superficial cerebral veins on the brain surface[J]. Stereotact Funct Neurosurg, 2008, 86(6):345-350. [4] Rhoton A L Jr. The cerebral veins[J]. Neurosurgery, 2002, 51(4 Suppl):S159-S205. [5] Tomasi S O, Umana G E, Scalia G, et al. The superficial anastomosing veins of the human brain cortex: a microneurosurgical anatomical study[J]. Front Surg, 2021, 8: 817002. [6] Uddin M A, Haq T U, Rafique M Z. Cerebral venous system anatomy[J]. J Pak Med Assoc, 2006, 56(11):516-519. [7] Tatu L, Vuillier F, Moulin T. Chapter 13 anatomy of the circulation of the brain and spinal cord[J]. Handb Clin Neurol, 2009, 92: 247-281. [8] Suzuki Y, Ikeda H, Shimadu M, et al. Variations of the basal vein: identification using three-dimensional CT angiography[J]. AJNR Am J Neuroradiol, 2001, 22(4):670-676. [9] Rhoton A L Jr. RHOTON 颅脑解剖与手术入路[M]. 刘庆良主译. 北京: 中国科学技术出版社, 2010. [10] Wang P Y, Fang X C, Du R, et al. Principles of amino-acid-nucleotide interactions revealed by binding affinities between homogeneous oligopeptides and single-stranded DNA molecules[J]. Chembiochem, 2022, 23(8):e202200048. [11] Chanda A, Nanda A. Anatomical study of the orbitozygomatic transsellar-transcavernous-transclinoidal approach to the basilar artery bifurcation[J]. J Neurosurg, 2002, 97(1):151-160. [12] Yasuda A, Campero A, Martins C, et al. Microsurgical anatomy and approaches to the cavernous sinus[J]. Neurosurgery, 2005, 56(1 Suppl):S4-S27. [13] Rosenblum J S, Tunacao J M, Chandrashekhar V, et al. Tentorial venous anatomy: variation in the healthy population[J]. AJNR Am J Neuroradiol, 2020, 41(10):1825-1832. [14] Ayanzen R H, Bird C R, Keller P J, et al. Cerebral Mr venography: normal anatomy and potential diagnostic pitfalls[J]. AJNR Am J Neuroradiol, 2000, 21(1):74-78. [15] Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans[J]. Brain Res Brain Res Rev, 2004, 46(3):243-260. [16] Ardeshiri A, Ardeshiri A, Tonn J C, et al. Microsurgical anatomy of the lateral mesencephalic vein and its meaning for the deep venous outflow of the brain[J]. Neurosurg Rev, 2006, 29(2):154-158. [17] Andeweg J. Consequences of the anatomy of deep venous outflow from the brain[J]. Neuroradiology, 1999, 41(4):233-241. [18] Tsutsumi S, Ono H, Ishii H. Bridging veins of the cerebellum: a magnetic resonance imaging study[J]. Surg Radiol Anat, 2021, 43(3):437-444. [19] Schmidek H H, Auer L M, Kapp J P. The cerebral venous system[J]. Neurosurgery, 1985, 17(4):663-678. [20] Oka K, Rhoton A L Jr, Barry M, et al. Microsurgical anatomy of the superficial veins of the cerebrum[J]. Neurosurgery, 1985, 17(5):711-748. [21] Takahashi A, Ushiki T, Abe K, et al. Cytoarchitecture of periendothelial cells in human cerebral venous vessels as compared with the scalp vein. A scanning electron microscopic study[J]. Arch Histol Cytol, 1994, 57(4):331-339. [22] Hill J, Rom S, Ramirez S H, et al. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease[J]. J Neuroimmune Pharmacol, 2014, 9(5):591-605. [23] Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels. A scanning electron microscopic study[J]. J Neurosurg, 1990, 73(1):82-90. [24] Kulik T, Kusano Y, Aronhime S, et al. Regulation of cerebral vasculature in normal and ischemic brain[J]. Neuropharmacology, 2008, 55(3):281-288. [25] Si Z, Luan L, Kong D, et al. MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition[J]. Eur J Med Res, 2008, 13(3):121-126. [26] Badaut J, Bix G J. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae[J]. Transl Stroke Res, 2014, 5(3):394-406. [27] Hufnagle J J, Tadi P. Neuroanatomy, brain veins[M]. Treasure Island (FL):StatPearls Publishing, 2022. [28] Zhang J H, Badaut J, Tang J P, et al. The vascular neural network-a new paradigm in stroke pathophysiology[J]. Nat Rev Neurol, 2012, 8(12):711-716. [29] Tong L S, Guo Z N, Ou Y B, et al. Cerebral venous collaterals: a new fort for fighting ischemic stroke?[J]. Prog Neurobiol, 2018, 163/164: 172-193. [30] Gustafsson O, Rossitti S. Intracranial pressure is a fraction of arterial blood pressure[J]. Eur J Neurol, 1995, 2(1):31-37. [31] Oberdier M T, Antaki J F, Kharlamov A, et al. Closed cranial window rodent model for investigating hemodynamic response to elevated intracranial pressure[J]. Animal Model Exp Med, 2021, 4(4):391-397. [32] DE Simone R, Ranieri A, Bonavita V. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension[J]. Panminerva Med, 2017, 59(1):76-89. [33] Chen J, Wang X M, Luan L M, et al. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension[J]. Chin Med J, 2012, 125(7):1303-1309. [34] Wilson M H. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure[J]. J Cereb Blood Flow Metab, 2016, 36(8):1338-1350. [35] Murtha L A, McLeod D D, Pepperall D, et al. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy[J]. J Cereb Blood Flow Metab, 2015, 35(12):2109. [36] Edvinsson L, McCulloch J, Uddman R. Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses[J]. J Physiol, 1982, 325: 161-173. [37] Edvinsson L, Högestätt E D, Uddman R, et al. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity[J]. J Cereb Blood Flow Metab, 1983, 3(2):226-230. [38] Auer L M, Edvinsson L, Johansson B B. Effect of sympathetic nerve stimulation and adrenoceptor blockade on pial arterial and venous calibre and on intracranial pressure in the cat[J]. Acta Physiol Scand, 1983, 119(3):213-217. [39] Mayhan W G, Werber A H, Heistad D D. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy[J]. Circulation, 1987, 75(1 Pt 2):I107-I112. [40] Min K J, Yoon S H, Kang J K. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy[J]. Med Hypotheses, 2011, 76(6):884-886. [41] Ambarki K, Baledent O, Kongolo G, et al. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers[J]. IEEE Trans Biomed Eng, 2007, 54(3):483-491. [42] Beggs C B. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis[J]. BMC Med, 2013, 11: 142. [43] Bateman G A, Levi C R, Schofield P, et al. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia[J]. Neuroradiology, 2008, 50(6):491-497. [44] Schaller B, Graf R, Sanada Y, et al. Hemodynamic changes after occlusion of the posterior superior sagittal sinus: an experimental PET study in Cats[J]. AJNR Am J Neuroradiol, 2003, 24(9):1876-1880. [45] Guibert R, Fonta C, Risser L, et al. Coupling and robustness of intra-cortical vascular territories[J]. Neuroimage, 2012, 62(1):408-417. [46] Harel N, Bolan P J, Turner R, et al. Recent advances in high-resolution MR application and its implications for neurovascular coupling research[J]. Front Neuroenergetics, 2010, 2: 130. [47] Profaci C P, Munji R N, Pulido R S, et al. The blood-brain barrier in health and disease: Important unanswered questions[J]. J Exp Med, 2020, 217(4):e20190062. [48] Vanlandewijck M, He L Q, Mäe M A, et al. A molecular atlas of cell types and zonation in the brain vasculature[J]. Nature, 2018, 554(7693):475-480. [49] Kucharz K, Kristensen K, Johnsen K B, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles[J]. Nat Commun, 2021, 12(1):4121. [50] Macdonald J A, Murugesan N, Pachter J S. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature[J]. J Neurosci Res, 2010, 88(7):1457-1474. [51] Saubaméa B, Cochois-Guégan V, Cisternino S, et al. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression[J]. J Cereb Blood Flow Metab, 2012, 32(1):81-92. [52] Alexander J S, Prouty L, Tsunoda I, et al. Venous endothelial injury in central nervous system diseases[J]. BMC Med, 2013, 11(1):219. [53] Ishikawa M, Cooper D, Arumugam T V, et al. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion[J]. J Cereb Blood Flow Metab, 2004, 24(8):907-915. [54] Ding W Y, Gupta D, Lip G Y H. Atrial fibrillation and the prothrombotic state: revisiting Virchow's triad in 2020[J]. Heart, 2020, 106(19):1463-1468. [55] Housholder G T. The role of the endothelium in in vivo anticoagulation[J]. J Oral Maxillofac Surg, 1991, 49(5):507-511. [56] Langen U H, Ayloo S, Gu C H. Development and cell biology of the blood-brain barrier[J]. Annu Rev Cell Dev Biol, 2019, 35: 591-613. [57] Prescott S M, McIntyre T M, Zimmerman G A. The role of platelet-activating factor in endothelial cells[J]. Thromb Haemost, 1990, 64(1):99-103. [58] Fortini F, Vieceli Dalla Sega F, Marracino L, et al. Well-known and novel players in endothelial dysfunction: updates on a notch(ed) landscape[J]. Biomedicines, 2021, 9(8):997. [59] Grulich-Henn J, Müller-Berghaus G. The role of vascular endothelial cells in the regulation of fibrinolysis[J]. Z Kardiol, 1989, 78(Suppl 6):S25-S29. [60] Félétou M, Vanhoutte P M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture)[J]. Am J Physiol Heart Circ Physiol, 2006, 291(3):H985-1002. [61] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国颅内静脉血栓形成诊断和治疗指南2019[J]. 中华神经科杂志, 2020, 53(9):648-663. [62] Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion[J]. Neurology, 2001, 56(12):1746-1748. [63] Farb R I, Vanek I, Scott J N, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis[J]. Neurology, 2003, 60(9):1418-1424. [64] Markey K A, Mollan S P, Jensen R H, et al. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions[J]. Lancet Neurol, 2016, 15(1):78-91. [65] Ball A K, Clarke C E. Idiopathic intracranial hypertension[J]. Lancet Neurol, 2006, 5(5):433-442. [66] Giridharan N, Patel S K, Ojugbeli A, et al. Understanding the complex pathophysiology of idiopathic intracranial hypertension and the evolving role of venous sinus stenting: a comprehensive review of the literature[J]. Neurosurg Focus, 2018, 45(1):E10. [67] Pickard J D, Czosnyka Z, Czosnyka M, et al. Coupling of sagittal sinus pressure and cerebrospinal fluid pressure in idiopathic intracranial hypertension—a preliminary report[J]. Acta Neurochir Suppl, 2008, 102: 283-285. [68] Duman T, Uluduz D, Midi I, et al. A multicenter study of 1144 patients with cerebral venous thrombosis: the VENOST study[J]. J Stroke Cerebrovasc Dis, 2017, 26(8):1848-1857. [69] Proulx S T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics[J]. Cell Mol Life Sci, 2021, 78(6):2429-2457. [70] Chen L, Elias G, Yostos M P, et al. Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption[J]. Neuroradiology, 2015, 57(2):139-147. [71] Zakharov A, Papaiconomou C, Koh L, et al. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep[J]. Microvasc Res, 2004, 67(1):96-104. [72] Julow J, Ishii M, Iwabuchi T. Arachnoid villi affected by subarachnoid pressure and haemorrhage. Scanning electron microscopic study in the dog[J]. Acta Neurochir, 1979, 51(1/2):63-72. [73] Yoshida S, Ogawa K, Fukushima T. The morphological study of cerebrospinal fluid drainage at monkey arachnoid granulations[J]. No To Shinkei, 1994, 46(6):549-554. [74] Ludemann J P, Poskitt K, Singhal A. Intracranial hypertension secondary to sigmoid sinus compression by group A streptococcal epidural abscess[J]. J Laryngol Otol, 2010, 124(1):93-95. [75] Rohr A, Bindeballe J, Riedel C, et al. The entire dural sinus tree is compressed in patients with idiopathic intracranial hypertension: a longitudinal, volumetric magnetic resonance imaging study[J]. Neuroradiology, 2012, 54(1):25-33. [76] Fuentes S, Metellus P, Levrier O, et al. Depressed skull fracture overlying the superior sagittal sinus causing benign intracranial hypertension. Description of two cases and review of the literature[J]. Br J Neurosurg, 2005, 19(5):438-442. [77] Engelhardt B, Vajkoczy P, Weller R O. The movers and shapers in immune privilege of the CNS[J]. Nat Immunol, 2017, 18(2):123-131. [78] Mapunda J A, Tibar H, Regragui W, et al. How does the immune system enter the brain?[J]. Front Immunol, 2022, 13: 805657. [79] Bartholomäus I, Kawakami N, Odoardi F, et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions[J]. Nature, 2009, 462(7269):94-98. [80] Kawakami N, Flügel A. Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures[J]. Semin Immunopathol, 2010, 32(3):275-287. [81] Ransohoff R M, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9):623-635. [82] Lassmann H. Multiple sclerosis pathology[J]. Cold Spring Harb Perspect Med, 2018, 8(3):a028936. [83] Engelhardt B, Ransohoff R M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers[J]. Trends Immunol, 2012, 33(12):579-589. [84] Vajkoczy P, Laschinger M, Engelhardt B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels[J]. J Clin Invest, 2001, 108(4):557-565. [85] Louveau A, Smirnov I, Keyes T J, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560):337-341. [86] Visanji N P, Lang A E, Munoz D G. Lymphatic vasculature in human dural superior sagittal sinus: implications for neurodegenerative proteinopathies[J]. Neurosci Lett, 2018, 665: 18-21. [87] Absinta M, Ha S K, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI[J]. Elife, 2017, 6: e29738. [88] Ahn J H, Cho H, Kim J H, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572(7767):62-66. [89] Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717):185-191. [90] Hu X T, Deng Q P, Ma L, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity[J]. Cell Res, 2020, 30(3):229-243. [91] Chen F, Xie X, Wang L. Research progress on intracranial lymphatic circulation and its involvement in disorders[J]. Front Neurol, 2022, 13: 865714. [92] Bolte A C, Dutta A B, Hurt M E, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis[J]. Nat Commun, 2020, 11(1):4524. [93] Sallusto F, Lenig D, Förster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999, 401(6754):708-712. [94] Rustenhoven J, Drieu A, Mamuladze T, et al. Functional characterization of the dural sinuses as a neuroimmune interface[J]. Cell, 2021, 184(4):1000-1016.e27. [95] Schwarzmaier S M, Kim S W, Trabold R, et al. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice[J]. J Neurotrauma, 2010, 27(1):121-130. [96] Jickling G C, Liu D Z, Ander B P, et al. Targeting neutrophils in ischemic stroke: translational insights from experimental studies[J]. J Cereb Blood Flow Metab, 2015, 35(6):888-901. [97] Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage[J]. Neurosurgery, 2009, 64(3):546-553. [98] Pang C C. Autonomic control of the venous system in health and disease: effects of drugs[J]. Pharmacol Ther, 2001, 90(2/3):179-230. [99] Pranevicius M, Pranevicius O. Cerebral venous steal: blood flow diversion with increased tissue pressure[J]. Neurosurgery, 2002, 51(5):1267-1273. [100] Pranevicius O, Pranevicius M, Pranevicius H, et al. Transition to collateral flow after arterial occlusion predisposes to cerebral venous steal[J]. Stroke, 2012, 43(2):575-579. [101] Yu X, Yuan L, Jackson A, et al. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke[J]. AJNR Am J Neuroradiol, 2016, 37(3):423-429. [102] Mucke J, Möhlenbruch M, Kickingereder P, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome[J]. PLoS One, 2015, 10(4):e0120801. [103] Bhaskar S, Bivard A, Parsons M, et al. Delay of late-venous phase cortical vein filling in acute ischemic stroke patients: associations with collateral status[J]. J Cereb Blood Flow Metab, 2017, 37(2):671-682. [104] Lin J X, Cheng Z Y, Shi Y Y, et al. Evaluating the velocity and extent of cortical venous filling in patients with severe middle cerebral artery stenosis or occlusion[J]. Front Neurol, 2021, 12: 610658. [105] Sasaki M, Honmou O, Radtke C, et al. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells[J]. PLoS One, 2011, 6(10):e26577. [106] Hoffman H, Ziechmann R, Swarnkar A, et al. Cortical vein opacification for risk stratification in anterior circulation endovascular thrombectomy[J]. J Stroke Cerebrovasc Dis, 2019, 28(6):1710-1717. [107] Zhang S, Lai Y X, Ding X F, et al. Absent filling of ipsilateral superficial middle cerebral vein is associated with poor outcome after reperfusion therapy[J]. Stroke, 2017, 48(4):907-914. [108] Jansen I G H, Van Vuuren A B, Van Zwam W H, et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke[J]. Radiology, 2018, 286(2):643-650. [109] Parthasarathy R, Kate M, Rempel J L, et al. Prognostic evaluation based on cortical vein score difference in stroke[J]. Stroke, 2013, 44(10):2748-2754. [110] Van Den Wijngaard I R, Wermer M J H, Boiten J, et al. Cortical venous filling on dynamic computed tomographic angiography: a novel predictor of clinical outcome in patients with acute middle cerebral artery stroke[J]. Stroke, 2016, 47(3):762-767. [111] Faizy T D, Kabiri R, Christensen S, et al. Association of venous outflow profiles and successful vessel reperfusion after thrombectomy[J]. Neurology, 2021, 96(24):e2903-e2911. [112] Xia H, Sun H, He S, et al. Absent cortical venous filling is associated with aggravated brain edema in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2021, 42(6):1023-1029. [113] Faizy T D, Kabiri R Z, Christensen S, et al. Venous outflow profiles are linked to cerebral edema formation at noncontrast head CT after treatment in acute ischemic stroke regardless of collateral vessel status at CT angiography[J]. Radiology, 2021, 299(3):682-690. [114] Faizy T D, Kabiri R Z, Christensen S, et al. Favorable venous outflow profiles correlate with favorable tissue-level collaterals and clinical outcome[J]. Stroke, 2021, 52(5):1761-1767. [115] Zhang J H, Obenaus A, Liebeskind D S, et al. Recanalization, reperfusion, and recirculation in stroke[J]. J Cereb Blood Flow Metab, 2017, 37(12):3818-3823. [116] Yu W G, Rives J, Welch B, et al. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction[J]. Stroke, 2009, 40(12):3736-3739. [117] Geraldes R, Sousa P R, Fonseca A C, et al. Nontraumatic convexity subarachnoid hemorrhage: different etiologies and outcomes[J]. J Stroke Cerebrovasc Dis, 2014, 23(1):e23-e30. [118] Panda S, Prashantha D K, Shankar S R, et al. Localized convexity subarachnoid haemorrhage-a sign of early cerebral venous sinus thrombosis[J]. Eur J Neurol, 2010, 17(10):1249-1258. [119] Fu F W, Rao J, Zheng Y Y, et al. Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by transverse sinus thrombosis: a case report and review of literature[J]. Medicine, 2017, 96(33):e7374. [120] Azeemuddin M, Awais M, Mubarak F, et al. Prevalence of subarachnoid haemorrhage among patients with cranial venous sinus thrombosis in the presence and absence of venous infarcts[J]. Neuroradiol J, 2018, 31(5):496-503. [121] Yokota H, Eguchi T, Nobayashi M, et al. Persistent intracranial hypertension caused by superior sagittal sinus stenosis following depressed skull fracture. Case report and review of the literature[J]. J Neurosurg, 2006, 104(5):849-852. [122] Higgins J N P, Burnet N G, Schwindack C F, et al. Severe brain edema caused by a meningioma obstructing cerebral venous outflow and treated with venous sinus stenting. Case report[J]. J Neurosurg, 2008, 108(2):372-376. [123] Kim A W, Trobe J D. Syndrome simulating pseudotumor cerebri caused by partial transverse venous sinus obstruction in metastatic prostate cancer[J]. Am J Ophthalmol, 2000, 129(2):254-256. [124] Strydom M A, Briers N, Bosman M C, et al. The anatomical basis of venographic filling defects of the transverse sinus[J]. Clin Anat, 2010, 23(2):153-159. [125] Li K, Ren M, Meng R, et al. Efficacy of stenting in patients with cerebral venous sinus thrombosis-related cerebral venous sinus stenosis[J]. J Neurointerv Surg, 2019, 11(3):307-312. [126] King J O, Mitchell P J, Thomson K R, et al. Cerebral venography and manometry in idiopathic intracranial hypertension[J]. Neurology, 1995, 45(12):2224-2228. [127] Puffer R C, Mustafa W, Lanzino G. Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature[J]. J Neurointerv Surg, 2013, 5(5):483-486. [128] Schaller B, Graf R. Cerebral venous infarction: the pathophysiological concept[J]. Cerebrovasc Dis, 2004, 18(3):179-188. [129] Beard D J, McLeod D D, Logan C L, et al. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for ‘collateral failure’ and infarct expansion after ischemic stroke[J]. J Cereb Blood Flow Metab, 2015, 35(5):861-872. [130] Muir K W, Macrae I M. Neuroimaging as a selection tool and endpoint in clinical and pre-clinical trials[J]. Transl Stroke Res, 2016, 7(5):368-377. [131] Zivadinov R, Chung C P. Potential involvement of the extracranial venous system in central nervous system disorders and aging[J]. BMC Med, 2013, 11: 260. [132] Beggs C B, Magnano C, Shepherd S J, et al. Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow[J]. J Magn Reson Imaging, 2014, 40(5):1215-1222. [133] Beggs C. The venous connection: the role of veins in neurodegenerative disease[M]//Minagar A, Alexander J. Inflammatory disorders of the nervous system. Cham: Humana Press, 2017: 259-273. [134] Müller L O, Toro E F, Haacke E M, et al. Impact of CCSVI on cerebral haemodynamics: a mathematical study using MRI angiographic and flow data[J]. Phlebology, 2016, 31(5):305-324. [135] Chung C P, Wang P N, Wu Y H, et al. More severe white matter changes in the elderly with jugular venous reflux[J]. Ann Neurol, 2011, 69(3):553-559. [136] Bai C B, Xu Y M, Zhou D, et al. The comparative analysis of non-thrombotic internal jugular vein stenosis and cerebral venous sinus stenosis[J]. J Thromb Thrombolysis, 2019, 48(1):61-67. [137] Chung C P, Hsu H Y, Chao A C, et al. Jugular venous reflux affects ocular venous system in transient monocular blindness[J]. Cerebrovasc Dis, 2010, 29(2):122-129. [138] Lochner P, Nedelmann M, Kaps M, et al. Jugular valve incompetence in transient global amnesia. A problem revisited[J]. J Neuroimaging, 2014, 24(5):479-483. [139] Schreiber S J, Doepp F, Klingebiel R, et al. Internal jugular vein valve incompetence and intracranial venous anatomy in transient global amnesia[J]. J Neurol Neurosurg Psychiatry, 2005, 76(4):509-513. [140] 韩珂, 邢英琦, 杨弋, 等. 头颈静脉回流障碍是短暂性全面遗忘症发病机制的新证据[C]//中华医学峰会暨中华医学会神经病学分会第八届全国中青年神经病学学术会议论文汇编, 2015: 62. [141] Han K, Hu H H, Chao A C, et al. Transient global amnesia linked to impairment of brain venous drainage: an ultrasound investigation[J]. Front Neurol, 2019, 10: 67. [142] Cheng C Y, Chang F C, Chao A C, et al. Internal jugular venous abnormalities in transient monocular blindness[J]. BMC Neurol, 2013, 13: 94. [143] Doepp F, Bähr D, John M, et al. Internal jugular vein valve incompetence in COPD and primary pulmonary hypertension[J]. J Clin Ultrasound, 2008, 36(8):480-484. [144] Pereira L, Campos Costa E, Nunes T, et al. Dynamics of a haemodynamic headache: a case report and literature review of headache secondary to flow inversion of the internal jugular vein[J]. Cephalalgia, 2016, 36(14):1370-1378. [145] Liu H X, Cao X Y, Zhang M C, et al. A case report of cough headache with transient elevation of intracranial pressure and bilateral internal jugular vein valve incompetence: a primary or secondary headache?[J]. Cephalalgia, 2018, 38(3):600-603. [146] Beggs C B, Giaquinta A, Veroux M, et al. Mid-term sustained relief from headaches after balloon angioplasty of the internal jugular veins in patients with multiple sclerosis[J]. PLoS One, 2018, 13(1):e0191534. [147] 杨晓燕, 闫峰, 孟然, 等. 应关注颈内静脉回流不良综合征[J]. 华西医学, 2018, 33(6):644-650. [148] Zhou D, Ding J Y, Asmaro K, et al. Clinical characteristics and neuroimaging findings in internal jugular venous outflow disturbance[J]. Thromb Haemost, 2019, 119(2):308-318. [149] Zhou D, Meng R, Zhang X, et al. Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting[J]. Eur J Neurol, 2018, 25(2):365-e13. [150] Vega-Moreno D A, Aviles-Aguilar A, De la-Torre A I, et al. Intracranial hypertension syndrome secondary to internal jugular vein thrombosis due to miliary cervical tuberculosis: a case report[J]. Surg Neurol Int, 2021, 12: 32. [151] Liess B D, Lollar K W, Christiansen S G, et al. Pulsatile tinnitus: a harbinger of a greater ill?[J]. Head Neck, 2009, 31(2):269-273. [152] Li B M, Shi Y B, Cao X Y. Angioplasty and stenting for intractable pulsatile tinnitus caused by dural venous sinus stenosis: a case series report[J]. Otol Neurotol, 2014, 35(2):366-370. [153] Russell E J, De Michaelis B J, Wiet R, et al. Objective pulse-synchronous “essential” tinnitus due to narrowing of the transverse dural venous sinus[J]. Int Tinnitus J, 1995, 1(2):127-137. [154] Eisenman D J, Raghavan P, Hertzano R, et al. Evaluation and treatment of pulsatile tinnitus associated with sigmoid sinus wall anomalies[J]. Laryngoscope, 2018, 128(Suppl 2):S1-S13. [155] Sundararajan S H, Ramos A D, Kishore V, et al. Dural venous sinus stenosis: why distinguishing Intrinsic-versus-extrinsic stenosis matters[J]. AJNR Am J Neuroradiol, 2021, 42(2):288-296. [156] Radvany M G, Solomon D, Nijjar S, et al. Visual and neurological outcomes following endovascular stenting for pseudotumor cerebri associated with transverse sinus stenosis[J]. J Neuroophthalmol, 2013, 33(2):117-122. [157] Lenck S, Vallée F, Labeyrie M A, et al. Stenting of the lateral sinus in idiopathic intracranial hypertension according to the type of stenosis[J]. Neurosurgery, 2017, 80(3):393-400. [158] Yang X X, Wu F, Liu Y H, et al. Predictors of successful endovascular treatment in severe cerebral venous sinus thrombosis[J]. Ann Clin Transl Neurol, 2019, 6(4):755-761. [159] Dong C, Zhao P F, Yang J G, et al. Incidence of vascular anomalies and variants associated with unilateral venous pulsatile tinnitus in 242 patients based on dual-phase contrast-enhanced computed tomography[J]. Chin Med J, 2015, 128(5):581-585. [160] Dinkin M, Oliveira C. Men are from mars, idiopathic intracranial hypertension is from venous: the role of venous sinus stenosis and stenting in idiopathic intracranial hypertension[J]. Semin Neurol, 2019, 39(6):692-703. [161] Satti S R, Leishangthem L, Spiotta A, et al. Dural venous sinus stenting for medically and surgically refractory idiopathic intracranial hypertension[J]. Interv Neuroradiol, 2017, 23(2):186-193. [162] Morrone C D, Bishay J, McLaurin J. Potential role of venular amyloid in Alzheimer's disease pathogenesis[J]. Int J Mol Sci, 2020, 21(6):1985. [163] Joo I L, Lai A Y, Bazzigaluppi P, et al. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease[J]. Sci Rep, 2017, 7: 46427. [164] Thal D R, Ghebremedhin E, Rüb U, et al. Two types of sporadic cerebral amyloid angiopathy[J]. J Neuropathol Exp Neurol, 2002, 61(3):282-293. [165] Keith J, Gao F Q, Noor R, et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction?[J]. J Neuropathol Exp Neurol, 2017, 76(4):299-312. [166] Moody D M, Brown W R, Challa V R, et al. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer's disease[J]. Ann N Y Acad Sci, 1997, 826: 103-116. [167] Ortner M, Hauser C, Schmaderer C, et al. Decreased vascular pulsatility in Alzheimer's disease dementia measured by transcranial color-coded duplex sonography[J]. Neuropsychiatr Dis Treat, 2019, 15: 3487-3499. [168] Lee Y, Ko J, Choi Y E, et al. Areas of white matter hyperintensities and motor symptoms of Parkinson disease[J]. Neurology, 2020, 95(3):e291-e298. [169] Liu M J, Xu H B, Wang Y H, et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson's disease[J]. J Vasc Surg, 2015, 61(6):1511-1520.e1. |
[1] | 左颖婷, 吴寿岭, 陈朔华, 田雪, 胥芹, 张怡君, 张晓丽, 王安心. 糖代谢异常人群中不同高血压亚型的心脑血管疾病风险[J]. 首都医科大学学报, 2023, 44(1): 42-48. |
[2] | 赵文博, 任长虹, 李思颉, 马红蕊, 吉训明. 低氧与缺血适应防治缺血性脑卒中新技术体系的创研及推广应用——2020年度国家科学技术进步奖二等奖[J]. 首都医科大学学报, 2022, 43(1): 1-5. |
[3] | 李子孝, 赵性泉, 王拥军. 脑血管病医疗质量改进关键技术与体系的建立和应用——2020年度国家科学技术进步奖二等奖[J]. 首都医科大学学报, 2022, 43(1): 6-12. |
[4] | 张慧博, 杨晓旭, 刘欣圆, 顾华, 王双坤, 杨旗. 磁共振影像对脑静脉窦血栓形成的诊断价值研究[J]. 首都医科大学学报, 2022, 43(1): 67-73. |
[5] | 李明, 李思颉, 吴川杰, 赵文博, 顾超雄, 吉训明. 聚焦临床问题推动科技转化——吉训明教授[J]. 首都医科大学学报, 2020, 41(5): 748-751. |
[6] | 韩小弟, 王明泽, 王硕. 从颅脑大手术到神经微创和修复的演变——微创神经外科奠基人和开拓者赵继宗院士[J]. 首都医科大学学报, 2020, 41(5): 810-817. |
[7] | 李扬, 董然, 芮宏亮, 刘韬帅, 郑居兵, 徐晓宇, 赵洋, 宋邦荣, 张魁. 合并慢性肾功能不全的冠状动脉粥样硬化性心脏病患者冠状动脉搭桥手术的预后及其影响因素[J]. 首都医科大学学报, 2020, 41(4): 597-602. |
[8] | 陆晓炯, 陈峰, 王英, 马建新, 赵素民. 卡络磺钠氯化钠注射液对重症脑血管病合并神经源性肺水肿治疗效果初探[J]. 首都医科大学学报, 2020, 41(3): 470-474. |
[9] | 王伊龙, 赵性泉, 王拥军. 高危非致残性脑血管病及其防控关键技术与应用——2016年度国家科学技术进步二等奖[J]. 首都医科大学学报, 2017, 38(1): 1-5. |
[10] | 黄语悠, 房亚兰, 刘克建, 赵咏梅. 一氧化氮及其衍生物在缺血性脑血管病中的作用[J]. 首都医科大学学报, 2017, 38(1): 67-71. |
[11] | 王德昭, 马宁, 胡宏宇, 莫大鹏, 付强, 陈威, 姜桂莹, 缪中荣, 陈步星. 冠状动脉病变与弓上动脉颅内外段病变相关性探讨[J]. 首都医科大学学报, 2016, 37(1): 58-61. |
[12] | 房亚兰, 罗玉敏, 赵咏梅. 大黄对缺血性脑血管病的保护作用及机制研究[J]. 首都医科大学学报, 2015, 36(5): 718-722. |
[13] | 桑翠琴, 王淑珍, 张震宇. 重度子痫前期远期预后随访[J]. 首都医科大学学报, 2014, 35(5): 663-666. |
[14] | 王曼, 马云川, 吉训明, 高利, 苏玉盛, 彭程, 魏翠柏, 张琳瑛, 尚建文. 脑代谢-脑血流同期显像在缺血性脑血管病的影像特征与类型[J]. 首都医科大学学报, 2013, 34(1): 43-48. |
[15] | 马青峰;贾建平;薛素芳;黄小钦;于跃怡;卢洁;张苗. 急性脑梗死患者血管异常与CT灌注成像及临床预后关系的研究[J]. 首都医科大学学报, 2010, 31(2): 149-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||