[1] 白霜, 潘玮, 刘娟, 等. 噪声性听力损失的研究进展[C]//全国声学设计创新技术与文化建筑声学工程学术会议论文集. 贵阳: 《环境工程》编辑部, 2018: 17-20. [2] Liberman M C. Hidden hearing loss[J]. Sci Am, 2015, 313(2):48-53. [3] Kujawa S G, Liberman M C. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss[J]. J Neurosci, 2009, 29(45):14077-14085. [4] Song Q, Shen P, Li X W, et al. Coding deficits in hidden hearing loss induced by noise: the nature and impacts[J]. Sci Rep, 2016, 6: 25200. [5] Xiong H, Lai L, Ye Y Y, et al. Glucose protects cochlear hair cells against oxidative stress and attenuates noise-induced hearing loss in mice[J]. Neurosci Bull, 2021, 37(5):657-668. [6] Shih C P, Kuo C Y, Lin Y Y, et al. Inhibition of cochlear HMGB1 expression attenuates oxidative stress and inflammation in an experimental murine model of noise-induced hearing loss[J]. Cells, 2021, 10(4):810. [7] 梁文琦, 柳柯, 龚树生. Sirtuins家族在感音神经性聋发病机制中的作用研究[J]. 中华耳科学杂志, 2021, 19(6):977-981. [8] Someya S, Yu W, Hallows W C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5):802-812. [9] Brown K D, Maqsood S, Huang J Y, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metab, 2014, 20(6):1059-1068. [10] Liang W Q, Zhao C L, Chen Z R, et al. Sirtuin-3 protects cochlear hair cells against noise-induced damage via the superoxide dismutase 2/reactive oxygen species signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 766512. [11] Defourny J, Aghaie A, Perfettini I, et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage[J]. Proc Natl Acad Sci U S A, 2019, 116(16):8010-8017. [12] Wu F, Xiong H, Sha S H. Noise-induced loss of sensory hair cells is mediated by ROS/AMPKα pathway[J]. Redox Biol, 2020, 29: 101406. [13] Ding T H, Yan A H, Liu K. What is noise-induced hearing loss?[J]. Br J Hosp Med, 2019, 80(9):525-529. [14] Kwon D N, Park W J, Choi Y J, et al. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss[J]. Aging, 2015, 7(8):579-594. [15] Shen Y H, Wu Q, Shi J S, et al. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson’s disease[J]. Biomed Pharmacother, 2020, 132: 110928. [16] Dikalova A E, Pandey A, Xiao L, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress[J]. Circ Res, 2020, 126(4):439-452. [17] Wang H L, Zhao N, Yan K S, et al. Inner hair cell ribbon synapse plasticity might be molecular basis of temporary hearing threshold shifts in mice[J]. Int J Clin Exp Pathol, 2015, 8(7):8680-8691. [18] Luo Y T, Qu T F, Song Q L, et al. Repeated moderate sound exposure causes accumulated trauma to cochlear ribbon synapses in mice[J]. Neuroscience, 2020, 429: 173-184. [19] Lv D Y, Luo M H, Cheng Z, et al. Tubeimoside I ameliorates myocardial ischemia-reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J]. Oxid Med Cell Longev, 2021, 2021: 5577019. [20] Yu H L, Liu Q, Chen G D, et al. SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis[J]. Int Immunopharmacol, 2022, 106: 108600. [21] Shi L J, Chang Y, Li X W, et al. Cochlear synaptopathy and noise-induced hidden hearing loss[J]. Neural Plast, 2016, 2016: 6143164. [22] Du Z D, Han S G, Qu T F, et al. Age-related insult of cochlear ribbon synapses: an early-onset contributor to D-galactose-induced aging in mice[J]. Neurochem Int, 2020, 133: 104649. [23] Ding D L, Prolla T, Someya S, et al. Roles of Bak and Sirt3 in paraquat-induced cochlear hair cell damage[J]. Neurotox Res, 2021, 39(4):1227-1237. |