[1] Coca S G, Singanamala S, Parikh C R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis[J]. Kidney Int, 2012, 81(5): 442-448. [2] Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury[J]. Kidney Int, 2018, 93(1): 27-40. [3] Healy E, Dempsey M, Lally C, et al. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line[J]. Kidney Int, 1998, 54(6): 1955-1966. [4] Danial N N, Korsmeyer S J. Cell death: critical control points[J]. Cell, 2004,116(2):205-219. [5] Pefanis A, Ierino F L, Murphy J M, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int, 2019, 96(2): 291-301. [6] Linkermann A, Chen G C, Dong G E, et al. Regulated cell death in AKI[J]. J Am Soc Nephrol, 2014, 25(12): 2689-2701. [7] Galluzzi L, Kepp O, Chan F K M, et al. Necroptosis: mechanisms and relevance to disease[J]. Annu Rev Pathol, 2017, 12: 103-130. [8] Quarato G, Guy C S, Grace C R, et al. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis[J]. Mol Cell, 2016, 61(4): 589-601. [9] Priante G, Gianesello L, Ceol M, et al. Cell death in the kidney[J]. Int J Mol Sci, 2019, 20(14): 3598. [10] Linkermann A, Bräsen J H, Himmerkus N, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury[J]. Kidney Int, 2012, 81(8): 751-761. [11] Chen H, Fang Y L, Wu J F, et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD[J]. Cell Death Dis, 2018, 9(9): 878. [12] Popper B, Rammer M T, Gasparitsch M, et al. Neonatal obstructive nephropathy induces necroptosis and necroinflammation[J]. Sci Rep, 2019, 9(1): 18600. [13] Li Y, Xia W, Wu M, et al. Activation of GSDMD contributes to acute kidney injury induced by cisplatin[J]. Am J Physiol Renal Physiol, 2020,318(1):F96-F106. [14] Sollberger G, Strittmatter G E, Garstkiewicz M, et al. Caspase-1: the inflammasome and beyond[J]. Innate Immun, 2014,20(2):115-125. [15] Shi J J, Gao W Q, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. [16] Miao N J, Yin F, Xie H Y, et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int, 2019, 96(5): 1105-1120. [17] Vilaysane A, Chun J, Seamone M E, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD[J]. J Am Soc Nephrol, 2010, 21(10): 1732-1744. [18] Xia W W, Li Y Y, Wu M Y, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. [19] Wu M Y, Xia W W, Jin Q Q, et al. Gasdermin E deletion attenuates ureteral obstruction-and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction[J]. Front Cell Dev Biol, 2021, 9: 754134. [20] Stockwell B R, Angeli J P F, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. [21] Angeli J P F, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. [22] Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI[J]. J Am Soc Nephrol, 2017, 28(1): 218-229. [23] Yang L, Guo J, Yu N, et al. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model[J]. Life Sci, 2020, 261: 118487. [24] Scholz H, Boivin F J, Schmidt-Ott K M, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5): 335-349. [25] Cameron R B, Beeson C C, Schnellmann R G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases[J]. J Med Chem, 2016, 59(23): 10411-10434. [26] Kang H M, Ahn S H, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development[J]. Nat Med, 2015, 21(1): 37-46. [27] Tran M, Tam D, Bardia A, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice[J]. J Clin Invest, 2011, 121(10): 4003-4014. [28] Namwanje M, Bisunke B, Rousselle T V, et al. Rapamycin alternatively modifies mitochondrial dynamics in dendritic cells to reduce kidney ischemic reperfusion injury[J]. Int J Mol Sci, 2021, 22(10): 5386. [29] Jiménez-Uribe A P, Bellido B, Aparicio-Trejo O E, et al. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats[J]. Free Radic Biol Med, 2021, 172: 358-371. [30] Dhillon P, Park J, Del Pozo C H, et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation[J]. Cell Metab, 2021, 33(2): 379-394.e8. [31] Archer S L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases[J]. N Engl J Med, 2013, 369(23): 2236-2251. [32] Brooks C, Wei Q Q, Cho S G, et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models[J]. J Clin Invest, 2009, 119(5): 1275-1285. [33] Liu Z, Li H, Su J Q, et al. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury[J]. Antioxid Redox Signal, 2019, 30(15): 1797-1816. [34] Aparicio-Trejo O E, Avila-Rojas S H, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and beta-oxidation promotes experimental AKI-to-CKD transition induced by folic acid[J]. Free Radic Biol Med, 2020,154:18-32. [35] Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021,11(4):1845-1863. [36] Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021,15(1):1519-1538. [37] Chung K W, Dhillon P, Huang S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019,30(4):784-799. [38] Maekawa H, Inoue T, Ouchi H, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J]. Cell Rep, 2019, 29(5): 1261-1273.e6. [39] Chung K W, Dhillon P, Huang S Z, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019, 30(4): 784-799.e5. [40] Lee K, Gusella G L, He J C. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease[J]. Kidney Int, 2021, 100(1): 67-78. [41] DiRocco D P, Bisi J, Roberts P, et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury[J]. Am J Physiol Renal Physiol, 2014, 306(4): F379-F388. [42] Yang L, Besschetnova T Y, Brooks C R, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5): 535-543. [43] Zhu F X, Liu W, Li T, et al. Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M[J]. Oncotarget, 2016, 7(18): 25604-25619. [44] Zhu F X, Li H, Long T T, et al. Tubular numb promotes renal interstitial fibrosis via modulating HIF-1α protein stability[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(5): 166081. [45] Canaud G, Brooks C R, Kishi S, et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair[J]. Sci Transl Med, 2019, 11(476): eaav4754. [46] Liu Y H. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2): 212-222. [47] Iwano M, Plieth D, Danoff T M, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest, 2002, 110(3): 341-350. [48] Zeisberg E M, Potenta S E, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287. [49] LeBleu V S, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053. [50] Sheng L L, Zhuang S G. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis[J]. Front Physiol, 2020, 11: 569322. [51] Lovisa S, LeBleu V S, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis[J]. Nat Med, 2015, 21(9): 998-1009. [52] Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010,21(2):212-222. [53] Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis[J]. Trends Endocrinol Metab, 2016,27(10):681-695. [54] Pyo M C, Chae S A, Yoo H J, et al. Ochratoxin a induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo[J]. Arch Toxicol, 2020, 94(9): 3329-3342. [55] Huen S C, Cantley L G. Macrophages in renal injury and repair[J]. Annu Rev Physiol, 2017, 79: 449-469. [56] Meng X M, Nikolic-Paterson D J, Lan H Y. Inflammatory processes in renal fibrosis[J]. Nat Rev Nephrol, 2014, 10(9): 493-503. [57] Lv L L, Feng Y, Wen Y, et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation[J]. J Am Soc Nephrol, 2018, 29(3): 919-935. [58] Jiang W J, Xu C T, Du C L, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022, 12(1): 324-339. [59] Prunotto M, Budd D C, Gabbiani G, et al. Epithelial-mesenchymal crosstalk alteration in kidney fibrosis[J]. J Pathol, 2012, 228(2): 131-147. [60] Hong Q, Cai H, Zhang L, et al. Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich α-2 glycoprotein-1[J]. Kidney Int, 2022, 101(2): 299-314. [61] Lin L, Shi C W, Sun Z R, et al. The Ser/Thr kinase p90RSK promotes kidney fibrosis by modulating fibroblast-epithelial crosstalk[J]. J Biol Chem, 2019, 294(25): 9901-9910. [62] Zhou Y, Xiong M X, Niu J, et al. Secreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney[J]. J Cell Sci, 2014, 127(20): 4494-4506. |