[1] Orellana-Urzúa S, Rojas I, Líbano L, et al. Pathophysiology of ischemic stroke: role of oxidative stress[J]. Curr Pharm Des, 2020, 26(34): 4246-4260. [2] Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies[J]. Exp Neurol, 2021, 335: 113518. [3] Xu S B, Lu J A, Shao A W, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294. [4] Maida C D, Norrito R L, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches[J]. Int J Mol Sci, 2020, 21(18): 6454. [5] Mendelson S J, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098. [6] Jia T X, Wang M J, Yan W J, et al. Upregulation of miR-489-3p attenuates cerebral ischemia/reperfusion injury by targeting histone deacetylase 2 (HDAC2)[J]. Neuroscience, 2022, 484: 16-25. [7] Jian Z H, Liu R, Zhu X Q, et al. The involvement and therapy target of immune cells after ischemic stroke[J]. Front Immunol, 2019, 10: 2167. [8] Cai W, Liu S X, Hu M Y, et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1): 108-121. [9] Otxoa-de-Amezaga A, Gallizioli M, Pedragosa J, et al. Location of neutrophils in different compartments of the damaged mouse brain after severe ischemia/reperfusion[J]. Stroke, 2019, 50(6): 1548-1557. [10] Kang L J, Yu H L, Yang X, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke[J]. Nat Commun, 2020, 11(1): 2488. [11] Herz J, Sabellek P, Lane T E, et al. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice[J]. Stroke, 2015, 46(10): 2916-2925. [12] Neumann J, Riek-Burchardt M, Herz J, et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke[J]. Acta Neuropathol, 2015, 129(2): 259-277. [13] Lehman H K, Segal B H. The role of neutrophils in host defense and disease[J]. J Allergy Clin Immunol, 2020, 145(6): 1535-1544. [14] Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013, 13(3): 159-175. [15] Anderson M C, Chaze T, Coïc Y M, et al. MUB40 binds to lactoferrin and stands as a specific neutrophil marker[J]. Cell Chem Biol, 2018, 25(4): 483-493.e9. [16] Anderson M C, Injarabian L, Andre A, et al. The MUB40 peptide for use in detecting neutrophil-mediated inflammation events[J/OL]. J Vis Exp. (2019-01-07)[2021-01-03]. https://pubmed.ncbi.nlm.nih.gov/30663636/. [17] Palm F, Pussinen P J, Safer A, et al. Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke[J]. Atherosclerosis, 2018, 271: 9-14. [18] Kaesmacher J, Boeckh-Behrens T, Simon S, et al. Risk of thrombus fragmentation during endovascular stroke treatment[J]. AJNR Am J Neuroradiol, 2017, 38(5): 991-998. [19] Abdelnaseer M M, Elfauomy N M, Esmail E H, et al. Matrix metalloproteinase-9 and recovery of acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2017, 26(4): 733-740. [20] Zhong C K, Yang J Y, Xu T, et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke[J]. Neurology, 2017, 89(8): 805-812. [21] Denorme F, Portier I, Rustad J L, et al. Neutrophil extracellular traps regulate ischemic stroke brain injury[J]. J Clin Invest, 2022, 132(10): e154225. [22] Nakahashi-Oda C, Fujiyama S, Nakazawa Y, et al. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke[J]. Sci Immunol, 2021, 6(64): eabe7915. [23] Doran A C, Yurdagul A, Jr, Tabas I. Efferocytosis in health and disease[J]. Nat Rev Immunol, 2020, 20(4): 254-267. [24] Kolb J P, Oguin T H 3rd, Oberst A, et al. Programmed cell death and inflammation: winter is coming[J]. Trends Immunol, 2017, 38(10): 705-718. [25] Li F F, Zhao H P, Li G W, et al. Intravenous antagomiR-494 lessens brain-infiltrating neutrophils by increasing HDAC2-mediated repression of multiple MMPs in experimental stroke[J]. FASEB J, 2020, 34(5): 6934-6949. [26] Ramadass M, Catz S D. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation[J]. Immunol Rev, 2016, 273(1): 249-265. [27] Perskvist N, Roberg K, Kulyté A, et al. Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils[J]. J Cell Sci, 2002, 115(Pt 6): 1321-1330. [28] Johnson J L, He J, Ramadass M, et al. Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane[J]. J Biol Chem, 2016, 291(7): 3423-3438. [29] Vieira O V, Botelho R J, Grinstein S. Phagosome maturation: aging gracefully[J]. Biochem J, 2002, 366(Pt 3): 689-704. [30] Zerial M, McBride H. Rab proteins as membrane organizers[J]. Nat Rev Mol Cell Biol, 2001, 2(2): 107-117. [31] Rao X S, Cong X X, Gao X K, et al. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake[J]. Cell Death Differ, 2021, 28(12): 3214-3234. [32] Toyofuku T, Morimoto K, Sasawatari S, et al. Leucine-rich repeat kinase 1 regulates autophagy through turning on TBC1D2-dependent Rab7 inactivation[J]. Mol Cell Biol, 2015, 35(17): 3044-3058. [33] Nishino H, Saito T, Wei R, et al. The LMTK1-TBC1D9B-Rab11A cascade regulates dendritic spine formation via endosome trafficking[J]. J Neurosci, 2019, 39(48): 9491-9502. [34] Xie Y, Mansouri M, Rizk A, et al. Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins[J]. Sci Rep, 2019, 9(1): 13342. [35] Biesemann A, Gorontzi A, Barr F, et al. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies[J]. J Biol Chem, 2017, 292(28): 11631-11640. [36] Villagomez F R, Diaz-Valencia J D, Ovalle-García E, et al. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages[J]. Sci Rep, 2021, 11(1): 20946. [37] Hisanaga S I, Wei R, Huo A N, et al. LMTK1, a novel modulator of endosomal trafficking in neurons[J]. Front Mol Neurosci, 2020, 13: 112. [38] Liao Y, Li M, Chen X Y, et al. Interaction of TBC1D9B with mammalian ATG8 homologues regulates autophagic flux[J]. Sci Rep, 2018, 8(1): 13496. [39] Krämer O H. HDAC2: a critical factor in health and disease[J]. Trends Pharmacol Sci, 2009, 30(12): 647-655. [40] Gediya P, Parikh P K, Vyas V K, et al. Histone deacetylase 2: a potential therapeutic target for cancer and neurodegenerative disorders[J]. Eur J Med Chem, 2021, 216: 113332. [41] Ito K, Herbert C, Siegle J S, et al. Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma[J]. Am J Respir Cell Mol Biol, 2008, 39(5): 543-550. [42] Rodríguez-López G M, Soria-Castro R, Campillo-Navarro M, et al. The histone deacetylase inhibitor valproic acid attenuates phospholipase Cγ2 and IgE-mediated mast cell activation[J]. J Leukoc Biol, 2020, 108(3): 859-866. [43] Shi X M, Li M, Cui M Z, et al. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid[J]. Am J Cancer Res, 2016, 6(3): 600-614. [44] Pace M, Williams J, Kurioka A, et al. Histone deacetylase inhibitors enhance CD4 T cell susceptibility to NK cell killing but reduce NK cell function[J]. PLoS Pathog, 2016, 12(8): e1005782. [45] Folkerts J, Redegeld F, Folkerts G, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling[J]. Allergy, 2020, 75(8): 1966-1978. |