[1] Lamas-Paz A, Hao F, Nelson L J, et al. Alcoholic liver disease: utility of animal models [J]. World J Gastroenterol, 2018, 24(45): 5063-5075. [2] Liu S, Tsai I, Hsu Y. Alcohol-related liver disease: basic mechanisms and clinical perspectives [J]. Int J Mol Sci, 2021, 22(10): 5170. [3] Kong L, Dong R, Huang K, et al. Yangonin modulates lipid homeostasis, ameliorates cholestasis and cellular senescence in alcoholic liver disease via activating nuclear receptor FXR [J]. Phytomedicine, 2021, 90: 153629. [4] Israelsen M, Kim M, Suvitaival T, et al. Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication [J]. JHEP Rep, 2021, 3(5): 100325. [5] Xu P, Yao J, Ji J, et al. Deficiency of apoptosis-stimulating protein 2 of p53 protects mice from acute hepatic injury induced by CCl (4) via autophagy [J]. Toxicol Lett, 2019, 316: 85-93. [6] Lin M, Chang Y, Xie F, et al. ASPP2 inhibits the profibrotic effects of transforming growth factor-β1 in hepatic stellate cells by reducing autophagy [J]. Dig Dis Sci, 2018, 63(1): 146-154. [7] Konno T, Kohno T, Okada T, et al. ASPP2 suppression promotes malignancy via LSR and YAP in human endometrial cancer [J]. Histochem Cell Biol, 2020, 154(2): 197-213. [8] 车阳, 王晋明,王阳,等.P53凋亡刺激蛋白2促进肝细胞脂质蓄积的分子机制研究 [J].北京医学,2022,44(1):49-53. [9] Yang S, Huang X Y, Zhou N, et al. RNA-Seq analysis of protection against chronic alcohol liver injury by rosa roxburghii fruit juice (Cili) in mice. Nutrients, 2022, 14(9):1974. [10] Zuo Z, Li Y, Zeng C, et al. Integrated analyses identify key molecules and reveal the potential mechanism of miR-182-5p/FOXO1 axis in alcoholic liver disease [J]. Front Med (Lausanne), 2021, 8: 767584. [11] Wang S, Sun Y, Wang Y, et al. ASPP2 inhibits hepatitis B virus replication by preventing nucleus translocation of HSF1 and attenuating the transactivation of ATG7 [J]. J Cell Mol Med, 2021, 25(14): 6899-6908. [12] Martínez-Barquero V, De Marco G, Martínez-Hervas S, et al. Polymorphisms in endothelin system genes, arsenic levels and obesity risk [J]. PLoS One, 2015, 10(3): e0118471. [13] Vaittinen M, Kolehmainen M, Rydén M, et al. MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation [J]. Obesity (Silver Spring), 2015, 23(7): 1371-1378. [14] Kim E J, Kim Y K, Kim S, et al. Adipochemokines induced by ultraviolet irradiation contribute to impaired fat metabolism in subcutaneous fat cells [J]. Br J Dermatol, 2018, 178(2): 492-501. [15] Nishimura K, Murakami T, Sakurai T, et al. Circulating apolipoprotein L1 is associated with insulin resistance-induced abnormal lipid metabolism[J]. Sci Rep, 2019,9(1):14869. [16] Chun J, Zhang J Y, Wilkins M S, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity [J]. Proc Natl Acad Sci U S A, 2019, 116(9): 3712-3721. [17] Dille M, Nikolic A, Wahlers N, et al. Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21 [J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(1): 166286. [18] Wilson P G, Thompson J C, Shridas P, et al. Serum amyloid A is an exchangeable apolipoprotein[J]. Arterioscler Thromb Vasc Biol, 2018,38(8):1890-1900. [19] Xiao H, Sun X, Lin Z, et al. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism[J]. Acta Pharm Sin B, 2022, 12(6):2887-2904. [20] Hao X, Chen W, Amato A, et al. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids[J]. New Phytol, 2022, 233(4):1797-1812. [21] Norman J E, Aung H H, Wilson D W, et al. Inhibition of perilipin 2 expression reduces pro-inflammatory gene expression and increases lipid droplet size[J]. Food Funct, 2018, 9(12):6245-6256. [22] Giménez-Andrés M, Emeršič T, Antoine-Bally S, et al. Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly [J]. Elife, 2021, 10: e61401. [23] Han X, Zhu J, Zhang X, et al. Plin4-dependent lipid droplets hamper neuronal mitophagy in the MPTP/p-induced mouse model of Parkinson's disease [J]. Front Neurosci, 2018, 12: 397. [24] Pettersen IKN, Tusubira D, Ashrafi H, et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation [J]. Mitochondrion, 2019, 49: 97-110. [25] Zhang M, Zhao Y, Li Z, et al. Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis [J]. Biochem Biophys Res Commun, 2018, 495(1): 582-586. [26] Schmidt-Heck W, Matz-Soja M, Aleithe S, et al. Fuzzy modeling reveals a dynamic self-sustaining network of the GLI transcription factors controlling important metabolic regulators in adult mouse hepatocytes [J]. Mol Biosyst, 2015, 11(8): 2190-2197. [27] Matz-Soja M, Rennert C, Schönefeld K, et al. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis [J]. Elife, 2016, 5: e13308. [28] Morzyglod L, Caüzac M, Popineau L, et al. Growth factor receptor binding protein 14 inhibition triggers insulin-induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma [J]. Hepatology, 2017, 65(4): 1352-1368. [29] Zhang J, Zhang Y, Sun T, et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2 [J]. Sci Rep, 2013, 3: 1476. [30] Derdak Z, Villegas K A, Wands J R. Early growth response-1 transcription factor promotes hepatic fibrosis and steatosis in long-term ethanol-fed Long-Evans rats [J]. Liver Int, 2012, 32(5): 761-770. |