[1] Lasker Foundation. Structures and functions of low-complexity domains 2025 Albert Lasker basic medical research award[EB/OL]. (2025-09-11)[2025-09-22]. https://laskerfoundation.org/winners/structures-and-functions-of-low-complexity-domains/.
[2] Görlich D, Kostka S, Kraft R, et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope[J]. Curr Biol, 1995, 5(4): 383-392.
[3] Fornerod M, Ohno M, Yoshida M, et al. CRM1 is an export receptor for leucine-rich nuclear export signals[J]. Cell, 1997, 90(6): 1051-1060.
[4] Frey S, Richter R P, Görlich D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties[J]. Science, 2006, 314(5800): 815-817.
[5] Frey S, Görlich D. FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties[J]. EMBO J, 2009, 28(17): 2554-2567.
[6] Schmidt H B, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity[J]. Elife, 2015, 4: e04251.
[7] Ng S C, Güttler T, Görlich D. Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide[J]. Nat Commun, 2021, 12(1): 4047.
[8] Landschulz W H, Johnson P F, McKnight S L. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite[J]. Science, 1989, 243(4899): 1681-1688.
[9] Vinson C R, Sigler P B, Mcknight S L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins[J]. Science, 1989, 246(4932): 911-916.
[10] Kato M, Han T W, Xie S H, et al. Cell-free formation of RNA granules:low complexity sequence domains form dynamic fibers within hydrogels[J]. Cell, 2012, 149(4): 753-767.
[11] Kato M, McKnight S L. The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores[J]. Proc Natl Acad Sci U S A, 2021, 118(42): e2114412118.
[12] Vodnala M, Choi E B, Fong Y W. Low complexity domains, condensates, and stem cell pluripotency[J]. World J Stem Cells, 2021, 13(5): 416-438.
[13] Hampoelz B, Andres-Pons A, Kastritis P, et al. Structure and assembly of the nuclear pore complex[J]. Annu Rev Biophys, 2019, 48: 515-536.
[14] Görlich D, Prehn S, Laskey R A, et al. Isolation of a protein that is essential for the first step of nuclear protein import[J]. Cell, 1994, 79(5): 767-778.
[15] Frey S, Görlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes[J]. Cell, 2007, 130(3): 512-523.
[16] Ng S C, Biswas A, Huyton T, et al. Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length[J]. Nat Commun, 2023, 14(1): 747.
[17] Matsuda A, Mansour A, Mohammad M R K. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics[J]. Nucleus, 2024, 15(1): 2399247.
[18] Gu J G, Zhou X M, Sutherland L, et al. A simple method for mapping the location of cross-β-forming regions within protein domains of low sequence complexity[J]. Proc Natl Acad Sci U S A, 2025, 122(17): e2503382122.
[19] Murakami T, Qamar S, Lin J Q, et al. ALS/FTD mutation-Induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function[J]. Neuron, 2015, 88(4): 678-690.[20] Shiramasa Y, Yamamoto R, Kashiwagi N, et al. An aberrant fused in sarcoma liquid droplet of amyotrophic lateral sclerosis pathological variant, R495X, accelerates liquid-solid phase transition[J]. Sci Rep, 2024, 14(1): 8914.
[21] Alberti S, Hyman A A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing[J]. Nat Rev Mol Cell Biol, 2021, 22(3): 196-213.
[22] Conicella A E, Zerze G H, Mittal J, et al. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity c-terminal domain[J]. Structure, 2016, 24(9): 1537-1549.
[23] Terlecki-Zaniewicz S, Humer T, Eder T, et al. Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression[J]. Nat Struct Mol Biol, 2021, 28(2): 190-201.
[24] Xu H M, Valerio D G, Eisold M E, et al. NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis[J]. Cancer Cell, 2016, 30(6): 863-878.
[25] Gould V E, Orucevic A, Zentgraf H, et al. Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis[J]. Hum Pathol, 2002, 33(5): 536-544.
[26] Behrens R T, Aligeti M, Pocock G M, et al. Nuclear export signal masking regulates HIV-1 rev trafficking and viral RNA nuclear export[J]. J Virol, 2017, 91(3): e02107-e02116.
|