[1] Mou T, Jing H, Yang W, et al. Preparation and biodistribution of [18F]FP2OP as myocardial perfusion imaging agent for positron emission tomography [J]. Bioorg Med Chem, 2010, 18(3): 1312-1320.[2] Huisman M C, Higuchi T, Reder S, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer [J]. J Nucl Med, 2008, 49(4): 630-636.[3] Yu M, Bozek J, Guaraldi M, et al. Cardiac imaging and safety evaluation of BMS747158, a novel PET myocardial perfusion imaging agent, in chronic myocardial compromised rabbits [J]. J Nucl Cardiol, 2010, 17(4): 631-636.[4] Yu M, Guaraldi M T, Bozek J, et al. Effects of food intake and anesthetic on cardiac imaging and uptake of BMS747158-02 in comparison with FDG [J]. J Nucl Cardiol, 2009, 16(5): 763-768.[5] Yalamanchili P, Wexler E, Hayes M, et al. Mechanism of uptake and retention of F-18 BMS-747 158-02 in cardiomyocytes: a novel PET myocardial imaging agent [J]. J Nucl Cardiol, 2007, 14(6): 782-788.[6] Maddahi J, Czernin J, Lazewatsky J, et al. Phase I, First-in-Human Study of BMS747158, a Novel 18F-Labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest [J]. J Nucl Med, 2011, 52(9): 1490-1498.[7] Sherif H M, Nekolla S G, Saraste A, et al. Simplified quantification of myocardial flow reserve with flurpiridaz F 18: validation with microspheres in a pig model [J]. J Nucl Med, 2011, 52(4): 617-624.[8] Mou T, Zhao Z, Fang W, et al. Synthesis and preliminary evaluation of 18F-labeled pyridaben analogues for myocardial perfusion imaging with positron emission tomography [J]. J Nucl Med, 2012, 53(3): 472-479.[9] Purohit A, Radeke H, Azure M, et al. Synthesis and biological evaluation of pyridazinone analogues as potential cardiac positron emission tomography tracers [J]. J Med Chem, 2008, 51(10): 2954-2970. |