[1] Zhang L, Han D, Huang D, et al. Prevalence of self-reported allergic rhinitis in eleven major cities in China[J]. Int Arch Allergy Immunol, 2009, 149(1):47-57.[2] Law A W, Reed S D, Sundy J S, et al. Direct costs of allergic rhinitis in the United States: estimates from the 1996 Medical Expenditure Panel Survey[J]. J Allergy Clin Immunol, 2003, 111(2):296-300.[3] Risch N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281):1516-1517.[4] Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery[J]. Genes Immun, 2006, 7(2):95-100.[5] Haagerup A, Bjerke T, Schoitz P O, et al. Allergic rhinitis a total genome-scan for susceptibility genes suggests a locus on chromosome 4q24-q27[J]. EJHG, 2001, 9(12):945-952.[6] Yokouchi Y, Shibasaki M, Noguchi E, et al. A genome-wide linkage analysis of orchard grass-sensitive childhood seasonal allergic rhinitis in Japanese families[J]. Genes Immun, 2002, 3(1):9-13.[7] Haagerup A, Borglum A D, Binderup H G, et al. Fine-scale mapping of type I allergy candidate loci suggests central susceptibility genes on chromosomes 3q, 4q and Xp[J]. Allergy, 2004, 59(1):88-94.[8] Dizier M H, Bouzigon E, Guilloud-Bataille M, et al. Genome screen in the French EGEA study: detection of linked regions shared or not shared by allergic rhinitis and asthma[J]. Genes Immun, 2005, 6(2):95-102.[9] Bu L M, Bradley M, Soderhall C, et al. Genome-wide linkage analysis of allergic rhinoconjunctivitis in a Swedish population[J]. Clin Exp Allergy, 2006, 36(2):204-210.[10] Brasch-Andersen C, Haagerup A, Borglum A D, et al. Highly significant linkage to chromosome 3q13.31 for rhinitis and related allergic diseases[J]. J Med Genetics, 2006, 43(3):e10.[11] Kruse L V, Nyegaard M, Christensen U, et al. A genome-wide search for linkage to allergic rhinitis in Danish sib-pair families[J]. EJHG, 2012, 20(9):965-972.[12] Nakamura H, Higashikawa F, Nobukuni Y, et al. Genotypes and haplotypes of CCR2 and CCR3 genes in Japanese cedar pollinosis[J]. Int Arch Allergy Immunol, 2007, 142(4):329-334.[13] Zhang J, Noguchi E, Migita O, et al. Association of a haplotype block spanning SDAD1 gene and CXC chemokine genes with allergic rhinitis[J]. J Allergy Clin Immunol, 2005, 115(3):548-554.[14] Chae S C, Park Y R, Oh G J, et al. The suggestive association of eotaxin-2 and eotaxin-3 gene polymorphisms in Korean population with allergic rhinitis[J]. Immunogenetics, 2005, 56(10):760-764.[15] Movahedi M, Amirzargar A A, Nasiri R, et al. Gene polymorphisms of Interleukin-4 in allergic rhinitis and its association with clinical phenotypes[J]. Am J Otolaryngol, 2013, 34(6):676-681.[16] Yadav A, Govindasamy G K, Naidu R. Polymorphic variants of interleukin-13 R130Q, interleukin-4 T589C, interleukin-4RA I50V, and interleukin-4RA Q576R in allergic rhinitis: A pilot study[J]. Allergy Rhinol, 2012, 3(1):e35-e40.[17] Lu M P, Chen R X, Wang M L, et al. Association study on IL4, IL13 and IL4RA polymorphisms in mite-sensitized persistent allergic rhinitis in a Chinese population[J]. PloS One, 2011, 6(11):e27363.[18] Hussein P Y, Zahran F, Ashour Wahba A, et al. Interleukin 10 receptor alpha subunit(IL-10RA) gene polymorphism and IL-10 serum levels in Egyptian atopic patients[J]. J Invest Allergol Clin Immunol, 2010, 20(1):20-26.[19] Crome S Q, Wang A Y, Levings M K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease[J]. Clin Exp Immunol, 2010, 159(2):109-119.[20] Afzali B, Mitchell P, Lechler R I, et al. Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells[J]. Clin Exp Immunol, 2010, 159(2):120-130.[21] Wang M, Zhang Y, Han D, et al. Association between polymorphisms in cytokine genes IL-17A and IL-17F and development of allergic rhinitis and comorbid asthma in Chinese subjects[J]. Hum Immunol, 2012, 73(6):647-653.[22] Kim J J, Kim H J, Lee I K, et al. Association between polymorphisms of the angiotensin-converting enzyme and angiotensinogen genes and allergic rhinitis in a Korean population[J]. Ann Otol, Rhinol Laryngol, 2004, 113(4):297-302.[23] Lue K H, Ku M S, Li C, et al. ACE gene polymorphism might disclose why some Taiwanese children with allergic rhinitis develop asthma symptoms but others do not[J]. Pediatr Allergy Immunol, 2006, 17(7):508-513.[24] Lin H, Lin D, Zheng C Q. Angiotensin-converting enzyme insertion/deletion polymorphism associated with allergic rhinitis susceptibility: Evidence from 1410 subjects[J]. JRAAS, 2013, [25] Nakamura H, Miyagawa K, Ogino K, et al. High contribution contrast between the genes of eosinophil peroxidase and IL-4 receptor alpha-chain in Japanese cedar pollinosis[J]. J Allergy Clin Immunol, 2003, 112(6):1127-1131.[26] Sanak M, Simon H U, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma[J]. Lancet, 1997, 350(9091):1599-1600.[27] Eskandari H G, Unal M, Ozturk O G, et al. Leukotriene C4 synthase A-444C gene polymorphism in patients with allergic rhinitis[J]. Otolaryn Head Neck, 2006, 134(6):997-1000.[28] Han D, She W, Zhang L. Association of the CD14 gene polymorphism C-159T with allergic rhinitis[J]. Am J Rhinol Allergy, 2010, 24(1):e1-e3.[29] Zhang Y, Duan S, Wei X, et al. Association between polymorphisms in FOXP3 and EBI3 genes and the risk for development of allergic rhinitis in Chinese subjects[J]. Hum Immunol, 2012, 73(9):939-945.[30] Distefano J K, Taverna D M. Technological issues and experimental design of gene association studies[J]. Meth Mol Biol, 2011, 700:3-16. |