[1] |
李健,高扬. 从心身医学角度探讨"从肝论治变异性哮喘"[J]. 世界中西医结合杂志, 2015, 10(10):1462-1464.
|
[2] |
宋敏捷,李占江. 现代心理治疗发展史与未来趋向[J]. 首都医科大学学报, 2019, 40(5):693-697.
|
[3] |
Miyasaka T, Dobashi-Okuyama K, Takahashi T, et al. The interplay between neuroendocrine activity and psychological stress-induced exacerbation of allergic asthma.[J]. Allergol Int, 2018, 67(1):32-42.
|
[4] |
Global Initiative for Asthma (GINA).Global strategy for asthma management and prevention[EB/OL].(2020-04-03). https://ginasthma.org/gina-reports.
|
[5] |
Ohno I. The interrelationship between asthma and brain activities:psychological stress-related asthma as a new asthma phenotype[J]. Arerugi, 2017, 66(3):153-160.
|
[6] |
Hartmann B, Leucht V, Loerbroks A. Work stress, asthma control and asthma-specific quality of life:initial evidence from a cross-sectional study[J]. J Asthma, 2017, 54(2):210-216.
|
[7] |
崔红生,武维屏,靳德社. 哮喘的脏腑论治[J]. 中医杂志, 2004,45(7):546-547.
|
[8] |
崔红生,武维屏,赵燕荣,等. 哮喘宁煎剂治疗支气管哮喘急性发作期的临床研究[J]. 北京中医药大学学报, 1999,22(1):57-60.
|
[9] |
张永涛,武维屏. 中国中西医结合学会呼吸病专业委员会第五次全国中西医结合呼吸病学术交流大会论文汇编.北京:中国中西医结合学会,2000.
|
[10] |
崔红生,黄启福,武维屏,等. 哮喘宁煎剂对哮喘豚鼠模型气道嗜酸细胞浸润的影响[J]. 中华结核和呼吸杂志, 1999,22(8):495,29.
|
[11] |
崔红生,黄启福,贾旭,等. 哮喘宁煎剂对豚鼠哮喘模型支气管壁内c-jun表达的影响[J]. 中国中医基础医学杂志, 1999,5(8):27-29.
|
[12] |
任传云,武维屏,周冠芬,等. 哮喘宁颗粒剂对哮喘大鼠糖皮质激素受体的影响[J]. 中国中医药信息杂志, 2004,1(2):118-119.
|
[13] |
单敏敏,李长安,崔红生. 哮喘宁颗粒对哮喘大鼠白三烯B4、白三烯C4、C-反应蛋白表达的调节作用[J]. 世界中西医结合杂志, 2019, 14(1):1-3.
|
[14] |
Liu Z, Guo F, Wang Y, et al. BATMAN-TCM:a bioinformatics analysis tool for molecular mechANism of mraditional Chinese medicine[J]. Sci Rep, 2016, 6:21146.
|
[15] |
Wan Y, Xu L, Liu Z, et al. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms[J]. BMC Complement Altern Med, 2019, 19(1):158.
|
[16] |
Guo M F, Dai Y J, Gao J R, et al. Uncovering the mechanism of astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology[J]. J Diabetes Res, 2020, 2020:5947304.
|
[17] |
Pan B, Shi X, Ding T, et al. Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach[J]. Am J Transl Res, 2019, 11(11):6790-6811.
|
[18] |
Jiao X, Sherman B T, Huang D W, et al. DAVID-WS:a stateful web service to facilitate gene/protein list analysis[J]. Bioinformatics, 2012, 28(13):1805-1806.
|
[19] |
Zhao J, Yang J, Tian S, et al. A survey of web resources and tools for the study of TCM network pharmacology[J]. Quant Biol, 2019, 7(1):17-29.
|
[20] |
李长安. 心理应激哮喘大鼠模型的建立及调肝理肺法作用机制研究. 北京:北京中医药大学, 2017.
|
[21] |
崔红生,靳锐锋,田彦. 情志因素与支气管哮喘证治探析[J]. 中华中医药杂志, 2014,29(3):771-773.
|
[22] |
皇惠杰,刘晓颖,侯晓玲,等. 尘螨变应原免疫治疗联合药物治疗对哮喘合并变应性鼻炎患儿临床疗效及气道高反应性的影响[J]. 首都医科大学学报, 2016, 37(5):568-573.
|
[23] |
Somani G S, Nahire M S, Parikh A D, et al. Neuroprotective effect of Cubebin:A dibenzylbutyrolactone lignan on scopolamine-induced amnesia in mice[J]. Indian J Med Res, 2017, 146(2):255-259.
|
[24] |
Zhu J X, Wen L, Zhong W J, et al. Quercetin, kaempferol and isorhamnetin in elaeagnus pungens thunb. Leaf:pharmacological activities and quantitative determination studies[J]. Chem Biodivers, 2018, 15(8):e1800129.
|
[25] |
Huang X F, Cheng W B, Jiang Y, et al. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma[J]. Int Immunopharmacol, 2020, 83:106423.
|
[26] |
段楠,黄辰炜,逄璐,等. 糖化白蛋白调控肾损伤相关分子与Toll样受体信号通路及齐墩果酸对其干预作用的研究[J]. 首都医科大学学报, 2019, 40(4):609-614.
|
[27] |
张巧云,李思颉,牛敬忠,等. 低氧预适应对急性脑梗死小鼠血清TNF-α、IL-1β和IL-6炎性反应因子的影响[J]. 首都医科大学学报, 2016, 37(1):89-92.
|
[28] |
Drake M G, Scott G D, Blum E D, et al. Eosinophils increase airway sensory nerve density in mice and in human asthma[J]. Sci Transl Med, 2018, 10(457):eaar8477.
|
[29] |
She W, Mei Z, Zhao H, et al. Nebulized inhalation of anti-nerve growth factor microspheres inhibits airway remodeling in an ovalbumin-induced rat asthma Model[J]. J Aerosol Med Pulm Drug Deliv, 2019, 32(2):70-77.
|
[30] |
Zhou W, Chen Z, Li W, et al. Systems pharmacology uncovers the mechanisms of anti-asthma herbal medicine intervention (ASHMI) for the prevention of asthma[J]. J Funct Foods, 2019, 52:611-619.
|
[31] |
Xu L, Sun W J, Jia A J, et al. MBD2 regulates differentiation and function of Th17 cells in neutrophils-dominant asthma via HIF-1alpha[J]. J Inflamm (Lond), 2018, 15:15.
|
[32] |
Sui P, Wiesner D L, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses[J]. Science, 2018, 360(6393):eaan8546.
|
[33] |
袁琳洁,陈诗皓,安高,等. IL-33诱导的小鼠过敏原非依赖性哮喘样模型肺组织免疫细胞及亚群的改变[J]. 首都医科大学学报, 2016, 37(5):561-567.
|
[34] |
Zhang L, Zhang X, Zheng J, et al. Depressive symptom-associated IL-1β and TNF-α release correlates with impaired bronchodilator response and neutrophilic airway inflammation in asthma.[J]. Clin Exp Allergy, 2019, 49(6):770-780.
|
[35] |
Krusche J, Twardziok M, Rehbach K, et al. TNF-α-induced protein 3 is a key player in childhood asthma development and environment-mediated protection[J]. J Allergy Clin Immunol,2019,144(6):1684-1696.
|
[36] |
Liu X, Shen J, Fan D, et al. Yupingfeng San inhibits NLRP3 inflammasome to attenuate the inflammatory response in asthma mice[J]. Front Pharmacol, 2017, 8:944.
|
[37] |
Lv J, Su W, Yu Q, et al. Heme oxygenase-1 protects airway epithelium against apoptosis by targeting the proinflammatory NLRP3-RXR axis in asthma[J]. J Biol Chem, 2018, 293(48):18454-18465.
|
[38] |
Bisyuk Y, Dubovyi A, Dubuske I, et al. Association of the CD14 C159T and the Toll-like receptor 4 Asp299Gly polymorphisms with various phenotypes of asthma in adults from Crimea[J]. Allergy Asthma Proc, 2020, 41(2):134-140.
|
[39] |
Tan W, Zheng J H, Duong T, et al. A fusion protein of DERP2 allergen and flagellin suppresses experimental allergic asthma[J]. Allergy Asthma Immunol Res, 2019, 11(2):254-266.
|
[40] |
Leaker B R, Singh D, Lindgren S, et al. Effects of the Toll-like receptor 7(TLR7) agonist, AZD8848, on allergen-induced responses in patients with mild asthma:a double-blind, randomised, parallel-group study[J]. Respir Res, 2019, 20(1):288.
|
[41] |
Qiao Y, Tam J K C, Tan S S L, et al. CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling[J]. J Allergy Clin Immunol, 2017, 139(1):82-92.
|
[42] |
Chiu K Y, Li J G, Lin Y. Calcium channel blockers for lung function improvement in asthma:a systematic review and meta-analysis[J]. Ann Allergy Asthma Immunol, 2017, 119(6):518-523.
|
[43] |
Asayama K, Kobayashi T, D'Alessandro-Gabazza C N, et al. Protein S protects against allergic bronchial asthma by modulating Th1/Th2 balance[J]. Allergy, 2020:1-3.
|
[44] |
Hou X, Wan H, Ai X, et al. Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma[J]. Clin Respir J, 2016, 10(3):371-379.
|
[45] |
Liu L L, Li F H, Zhang Y, et al. Tangeretin has anti-asthmatic effects via regulating PI3K and Notch signaling and modulating Th1/Th2/Th17 cytokine balance in neonatal asthmatic mice[J]. Braz J Med Biol Res, 2017, 50(8):e5991.
|
[46] |
Zhang Y, Jing Y, Qiao J, et al. Activation of the mTOR signaling pathway is required for asthma onset[J]. Sci Rep, 2017, 7(1):4532.
|