[1] Cheng Q, Tong Y, Wang Z, et al. Molecular cloning and functional identification of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Tripterygium wilfordii[J]. Acta Pharma Sin B, 2017, 7(2):208-214. [2] Guan H, Zhao Y, Su P, et al. Molecular cloning and functional identification of sterol C24-methyl transferase gene from Tripterygium wilfordii[J]. Acta Pharma Sin B, 2017, 7(5):603-609. [3] Zhao Y, Zhang Y, Su P, et al. Genetic transformation system for woody plant Tripterygium wilfordii and its application to product natural celastrol[J]. Front Plant Sci, 2018, 8:2221.1-13. [4] Zhou J, Zhang Y, Hu T, et al. Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii[J]. Int J Biol Macromol, 2018, 120(Pt A):203-212. [5] Tong Y, Su P, Guan H, et al. Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in Tripterygium wilfordii[J]. Biochem J, 2018, 475(17):2713-2725. [6] Ma B, Liu X, Lu Y, et al. A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook.f.[J]. Phytochemistry, 2019, 166:112062. [7] Song Y, Chen S, Wang X, et al. A novel strategy to enhance terpenoids production using cambial meristematic cells of Tripterygium wilfordii Hook.f.[J]. Plant methods, 2019, 15(1):129. [8] Zhang Y, Zhao Y, Wang J, et al. The expression of TwDXS in the MEP pathway specifically affects the accumulation of triptolide[J]. Physiol Plant, 2020, 169(1):40-48. [9] Su P, Guan H, Zhao Y, et al. Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii[J]. Plant J, 2018, 93(1):50-65. [10] Tu L, Su P, Zhang Z, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis[J]. Nat Commun, 2020, 11(1):971. [11] Zhou J, Hu T, Gao L, et al. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast[J]. New Phytol, 2019, 223(2):722-735. [12] Li Y, Lin H, Wang J, et al. Glucosyltransferase capable of catalyzing the last step in neoandrographolide biosynthesis[J]. Org Lett, 2018, 20(19):5999-6002. [13] Yin Y, Li Y, Jiang D, et al. De novo biosynthesis of liquiritin in Saccharomyces cerevisiae[J]. Acta Pharma Sin B, 2020, 10(4):711-721. [14] Gao W, Hillwig M L, Huang L, et al. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J]. Org Lett, 2009, 11(22):5170-5173. [15] Gao W, Sun H, Xiao H, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J]. BMC Genomics, 2014, 15:73. [16] Zhou Y, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem Soc, 2012, 134(6):3234-3241. [17] Hu T, Zhou J, Tong Y, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast[J]. Metab Eng, 2020, 60:87-96. [18] Liu X, Zhao P, Wang X, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells[J]. J Exp Clin Canc Res, 2019, 38(1):184. [19] Liu X, Zhao P, Wang X, et al. Triptolide induces glioma cell autophagy and apoptosis via upregulating the ROS/JNK and downregulating the Akt/mTOR signaling pathways[J]. Front Oncol, 2019, 9:387. |