[1] Giudicessi J R, Wilde A A M, Ackerman M J. The genetic architecture of long QT syndrome: a critical reappraisal[J]. Trends Cardiovasc Med, 2018, 28(7): 453-464. [2] Lees-Miller J P, Kondo C, Wang L, et al. Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts[J]. Circ Res, 1997, 81(5): 719-726. [3] London B, Trudeau M C, Newton K P, et al. Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current[J]. Circ Res, 1997, 81(5): 870-878. [4] Cabral J H M, Lee A, Cohen S L, et al. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain[J]. Cell, 1998, 95(5): 649-655. [5] Brelidze T I, Carlson A E, Sankaran B, et al. Structure of the carboxy-terminal region of a KCNH channel[J]. Nature, 2012, 481(7382): 530-533. [6] Sale H, Wang J L, O'Hara T J, et al. Physiological properties of hERG 1a/1b heteromeric currents and a hERG 1b-specific mutation associated with Long-QT syndrome[J]. Circ Res, 2008, 103(7): e81-e95. [7] Holzem K M, Gomez J F, Glukhov A V, et al. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure[J]. J Mol Cell Cardiol, 2016, 96: 82-92. [8] Aromolaran K A, Do J, Bernardi J, et al. mTOR modulation of IKr through hERG1b-dependent mechanisms in lipotoxic heart[J]. Int J Mol Sci, 2022, 23(15): 8061. [9] McPate M J, Zhang H, Cordeiro J M, et al. hERG1a/1b heteromeric currents exhibit amplified attenuation of inactivation in variant 1 short QT syndrome[J]. Biochem Biophys Res Commun, 2009, 386(1): 111-117. [10] Chen J, Zou A, Splawski I, et al. Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation[J]. J Biol Chem, 1999, 274(15): 10113-10118. [11] Gianulis, C E, Trudeau M C. Rescue of aberrant gating by a genetically encoded PAS (Per-Arnt-Sim) domain in several long QT syndrome mutant human ether-á-go-go-related gene potassium channels[J]. J Biol Chem, 2011, 286(25): 22160-22169. [12] 刘杰, 胡大一, 刘文玲, 等. 国人Ⅱ型长QT综合征临床特点及KCNH2基因变异[J]. 科学技术与工程, 2006, 6(11): 1529-1533. [13] Smith J L, Anderson C L, Burgess D E, et al. Molecular pathogenesis of long QT syndrome type 2[J]. J Arrhythm, 2016, 32(5): 373-380. [14] Harley C A, Bernardo-Seisdedos G, Stevens-Sostre W A, et al. Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating[J]. Proc Natl Acad Sci U S A, 2021, 118(44): e2108796118. [15] Soohoo S M, Tiwari P B, Suzuki Y J, et al. Investigation of PAS and CNBH domain interactions in hERG channels and effects of long-QT syndrome-causing mutations with surface plasmon resonance[J]. J Biol Chem, 2022, 298(1): 101433. [16] Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome[J]. N Engl J Med, 2010, 363(15): 1397-1409. [17] Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells[J]. Nature, 2011, 471(7337): 225-229. [18] Brandão K O, van den Brink L, Miller D C, et al. Isogenic Sets of hiPSC-CMs harboring distinct KCNH2 mutations differ functionally and in susceptibility to drug-induced arrhythmias[J]. Stem Cell Reports, 2020, 15(5): 1127-1139. [19] Chang Y, Li Y N, Bai R, et al. hERG-deficient human embryonic stem cell-derived cardiomyocytes for modelling QT prolongation[J]. Stem Cell Res Ther, 2021, 12(1): 278. |