[1]桑国卫. 2018年国家重大新药创制专项进展及十三五展望[J]. 中国生物工程杂志, 2019, 39(2): 3-12.
[2] 陈玲, 刘艳红, 邹栩, 等. 2015年全球重要治疗领域新药研究的最新进展[J]. 中国新药杂志, 2016, 25(6): 601-621.
[3] 国家自然科学基金委员会. 2023年度国家自然科学基金项目指南[M]. 北京: 科学出版社, 2023.
[4] Frangogiannis N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488.
[5] Buffolo F, Tetti M, Mulatero P, et al. Aldosterone as a mediator of cardiovascular damage[J]. Hypertension, 2022, 79(9): 1899-1911.
[6] Yang Y T, Yan X X, Xue J Y, et al. Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis[J]. Cell Death Differ, 2019, 26(7): 1332-1345.
[7] Xue J, Yan X, Yang Y, et al. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts[J]. Basic Res Cardiol, 2019, 114(5): 40.
[8] Fu Z P, Wu L L, Xue J Y, et al. Connexin 43 hyper-phosphorylation at serine 282 triggers apoptosis in rat cardiomyocytes via activation of mitochondrial apoptotic pathway[J]. Acta Pharmacol Sin, 2022, 43(8): 1970-1978.
[9] Sun Z P, Wang L Q, Han L, et al. Functional calsequestrin-1 is expressed in the heart and its deficiency is causally related to malignant hyperthermia-like arrhythmia[J]. Circulation, 2021, 144(10): 788-804.
[10] Zheng Y Y, Liu T T, Wang Z Q, et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice[J]. Int J Biol Macromol, 2018, 112: 929-936.
[11] Girardeau G, Lopes-Dos-Santos V. Brain neural patterns and the memory function of sleep[J]. Science, 2021, 374(6567): 560-564.
[12] Ciric J, Kapor S, Perovic M, et al. Alterations of sleep and sleep oscillations in the hemiparkinsonian rat[J]. Front Neurosci, 2019, 13: 148.
[13] Yi P L, Tsai C H, Lu M K, et al. Interleukin-1β mediates sleep alteration in rats with rotenone-induced parkinsonism[J]. Sleep, 2007, 30(4): 413-425.
[14] Mizrahi-Kliger A D, Feldmann L K, Kühn A A, et al. Etiologies of insomnia in Parkinson's disease-lessons from human studies and animal models[J]. Exp Neurol, 2022, 350: 113976.
[15] Scammell T E, Arrigoni E, Lipton J O. Neural circuitry of wakefulness and sleep[J]. Neuron, 2017, 93(4): 747-765.
[16] Shen Y, Yu W B, Shen B, et al. Propagated α-synucleinopathy recapitulates REM sleep behaviour disorder followed by parkinsonian phenotypes in mice[J]. Brain, 2020, 143(11): 3374-3392.
[17] Wong Y C, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies[J]. Nat Med, 2017, 23(2): 1-13.
[18] Iliff J J, Wang M H, Liao Y H, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111.
[19] Ringstad G, Vatnehol S A S, Eide P K. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain, 2017, 140(10): 2691-2705.
[20] Holth J K, Fritschi S K, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans[J]. Science, 2019, 363(6429): 880-884.
[21] Scott-Massey A, Boag M K, Magnier A, et al. Glymphatic system dysfunction and sleep disturbance may contribute to the pathogenesis and progression of Parkinsons disease[J]. Int J Mol Sci, 2022, 23(21): 12928.
[22] Fan Z, Liang Z G, Yang H, et al. Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia[J]. J Neuroinflammation, 2017, 14(1): 256.
[23] Zhang D, Zhang W J, Deng S M, et al. Tenuigenin promotes non-rapid eye movement sleep via the GABAA receptor and exerts somnogenic effect in a MPTP mouse model of Parkinson's disease[J]. Biomed Pharmacother, 2023, 165: 115259.
[24] Fornaro M, Anastasia A, Novello S, et al. The emergence of loss of efficacy during antidepressant drug treatment for major depressive disorder: an integrative review of evidence, mechanisms, and clinical implications[J]. Pharmacol Res, 2019, 139: 494-502.
[25] Gonda X, Dome P, Neill J C, et al. Novel antidepressant drugs: beyond monoamine targets[J]. CNS Spectr, 2023, 28(1): 6-15.
[26] Wang Y T, Zhang N N, Liu L J, et al. Glutamatergic receptor and neuroplasticity in depression: implications for ketamine and rapastinel as the rapid-acting antidepressants[J]. Biochem Biophys Res Commun, 2022, 594: 46-56.
[27] Murezati T, Gao N N, Yang Y Q, et al. A novel NMDA receptor modulator: antidepressant effect and mechanism of GW043[J]. 中国药理学与毒理学杂志, 2023, 37(7): 540.
[28] Kandola A, Stubbs B. Exercise and anxiety[J]. Adv Exp Med Biol, 2020, 1228: 345-352.
[29] Bandelow B. Current and novel psychopharmacological drugs for anxiety disorders[J]. Adv Exp Med Biol, 2020, 1191: 347-365.
[30] Sartori S B, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders[J]. Pharmacol Ther, 2019, 204: 107402.
[31] 杨雅琪, 木热扎提·提力瓦尔地, 高娜娜, 等. GW117抗抑郁和抗焦虑作用及其机制[J]. 中国药理学与毒理学杂志, 2023, 37(7): 540.
[32] Obeng S, Hiranita T, León F, et al. Novel approaches, drug candidates, and targets in pain drug discovery[J]. J Med Chem, 2021, 64(10): 6523-6548.
[33] McCutcheon R A, Reis Marques T, Howes O D. Schizophrenia-an overview[J]. JAMA Psychiatry, 2020, 77(2): 201-210.
[34] De Palma M, Biziato D, Petrova T V. Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474.
[35] Qi S Y, Deng S L, Lian Z X, et al. Novel drugs with high efficacy against tumor angiogenesis[J]. Int J Mol Sci, 2022, 23(13): 6934.
[36] Vimalraj S. A concise review of VEGF, PDGF, FGF, notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions[J]. Int J Biol Macromol, 2022, 221: 1428-1438.
[37] Anderson J, Majzner R G, Sondel P M. Immunotherapy of neuroblastoma: facts and hopes[J]. Clin Cancer Res, 2022, 28(15): 3196-3206.
[38] Chu J F, Gao F C, Yan M M, et al. Natural killer cells: a promising immunotherapy for cancer[J]. J Transl Med, 2022, 20(1): 240.
[39] Wolf N K, Kissiov D U, Raulet D H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy[J]. Nat Rev Immunol, 2023, 23(2): 90-105.
[40] Ullah R, Yin Q, Snell A H, et al. RAF-MEK-ERK pathway in cancer evolution and treatment[J]. Semin Cancer Biol, 2022, 85: 123-154.
[41] Luo D D, Liu X C, Jiang L L, et al. Rational design, synthesis, and biological evaluation of novel S1PR2 antagonists for reversing 5-FU-resistance in colorectal cancer[J]. J Med Chem, 2022, 65(21): 14553-14577.
[42] Kciuk M, Gielecińska A, Budzinska A, et al. Metastasis and MAPK pathways[J]. Int J Mol Sci, 2022, 23(7): 3847.
[43] Emont M P, Jacobs C, Essene A L, et al. A single-cell Atlas of human and mouse white adipose tissue[J]. Nature, 2022, 603(7903): 926-933.
[44] Bäckdahl J, Franzén L, Massier L, et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin[J]. Cell Metab, 2021, 33(9): 1869-1882.e6.
[45] Rondini E A, Ramseyer V D, Burl R B, et al. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development[J]. Mol Metab, 2021, 53: 101307.
[46] Liu Y, Wu Y T, Jiang M X. The emerging roles of PHOSPHO1 and its regulated phospholipid homeostasis in metabolic disorders[J]. Front Physiol, 2022, 13: 935195.
[47] Jiang M X, Chavarria T E, Yuan B B, et al. Phosphocholine accumulation and PHOSPHO1 depletion promote adipose tissue thermogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(26): 15055-15065.
[48] Gliniak C M, Scherer P E. PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes[J]. Proc Natl Acad Sci U S A, 2020, 117(29): 16726-16728.
[49] Duan Y R, Zhang S H, Li Y, et al. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia[J]. Front Genet, 2022, 13: 963184.
[50] Ma C F, Shi T T, Song L N, et al. Angiotensin (1-7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor[J]. Nutr Metab (Lond), 2022, 19(1): 82.
[51] Li Y L, Li L, Liu Y H, et al. Identification of metabolism-related proteins as biomarkers of insulin resistance and potential mechanisms of m6A modification[J]. Nutrients, 2023, 15(8): 1839.
[52] 刘瑶, 洪岚, 余露山, 等. 创新药物转化研究中ADME的评价[J]. 药学学报, 2011, 46(1): 19-29.
[53] 余露山, 毕惠嫦, 郝海平, 等. 药物代谢和药物动力学国家自然科学基金项目分析及其基础研究的发展与展望[J]. 药学进展, 2016, 40(5): 358-362.
[54] Xia Z C, Zhou X L, Li J Y, et al. Multiple-omics techniques reveal the role of glycerophospholipid metabolic pathway in the response of Saccharomyces cerevisiae against hypoxic stress[J]. Front Microbiol, 2019, 10: 1398.
[55] Cui C, Zhou T, Li J Y, et al. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia[J]. Chem Biol Interact, 2015, 236: 57-66.
[56] Zhou T, Wang M M, Cheng H T, et al. UPLC-HRMS based metabolomics reveals the sphingolipids with long fatty chains and olefinic bonds up-regulated in metabolic pathway for hypoxia preconditioning[J]. Chem Biol Interact, 2015, 242: 145-152.
[57] Wu Y, Ma Y, Li J, et al. The bioinformatics and metabolomics research on anti-hypoxic molecular mechanisms of Salidroside via regulating the PTEN mediated PI3K/Akt/NF-κB signaling pathway[J]. Chin J Nat Med, 2021, 19(6): 442-453.
[58] Ma Y, Wu Y, Xia Z C, et al. Anti-hypoxic molecular mechanisms of Rhodiola crenulata extract in zebrafish as revealed by metabonomics[J]. Front Pharmacol, 2019, 10: 1356.
[59] Gong W W, Xu P X, Guo S S, et al. Effect of hypoxia on the pharmacokinetics and metabolism of zaleplon as a probe of CYP3A1/2 activity[J]. RSC Adv, 2017, 7(41): 25414-25421.
[60] Lu S S, Guo S S, Xu P X, et al. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood-brain barrier penetration capabilities[J]. Int J Nanomedicine, 2016, 11: 6325-6336.
[61] Chen Q Y, Bai L, Zhou X L, et al. Development of long-circulating lapachol nanoparticles: formation, characterization, pharmacokinetics, distribution and cytotoxicity[J]. RSC Adv, 2020, 10(50): 30025-30034.
[62] Song W T, Bai L, Yang Y Y, et al. Long-circulation and brain targeted isoliquiritigenin micelle nanoparticles: formation, characterization, tissue distribution, pharmacokinetics and effects for ischemic stroke[J]. Int J Nanomedicine, 2022, 17: 3655-3670.
[63] Xu H L, Chen Q Y, Wang H, et al. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase Ⅰ and topoisomerase Ⅱ[J]. J Exp Clin Cancer Res, 2016, 35(1): 178.
[64] Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development[J]. Drug Discov Today, 2021, 26(1): 80-93.
|