[1]Santoni B G, Hynes R A, McGilvray K C, et al. Cortical bone trajectory for lumbar pedicle screws[J]. Spine J, 2009, 9(5): 366-373.
[2]Cofano F, Marengo N, Ajello M, et al. The era of cortical bone trajectory screws in spine surgery: a qualitative review with rating of evidence[J]. World Neurosurg, 2020, 134: 14-24.
[3]张天擎, 张希诺, 韩渤, 等. 皮质骨轨迹螺钉与椎弓根螺钉在后路胸腰椎融合术应用的Meta分析[J]. 首都医科大学学报, 2019, 40(4): 510-516.
[4]Ding H T, Han B, Hai Y, et al. The feasibility of assessing the cortical bone trajectory screw placement accuracy using a traditional pedicle screw insertion evaluation system[J]. Clin Spine Surg, 2021, 34(2): E112-E120.
[5]Silva F, Silva P S, Vaz R, et al. Midline lumbar interbody fusion (MIDLIF) with cortical screws: initial experience and learning curve[J]. Acta Neurochir (Wien), 2019, 161(12): 2415-2420.
[6]Rexiti P, Aierken A, Sadeer A, et al. Anatomy and imaging studies on cortical bone screw freehand placement applying anatomical targeting technology[J]. Orthop Surg, 2020, 12(6): 1954-1962.
[7]Jia L, Yu Y, Khan K, et al. Superior facet joint violations during single level minimally invasive transforaminal lumbar interbody fusion: a preliminary retrospective clinical study[J]. Biomed Res Int, 2018, 2018: 6152769.
[8]丁红涛, 海涌, 刘玉增, 等. 腰椎后路融合术应用皮质骨轨迹螺钉内固定对邻近节段退变的影响[J]. 中华医学杂志, 2020, 100(43): 3437-3442.
[9]Elswick C M, Strong M J, Joseph J R, et al. Robotic-assisted spinal surgery: current generation instrumentation and new applications[J]. Neurosurg Clin N Am, 2020, 31(1): 103-110.
[10]Feng S, Tian W, Sun Y Q, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixation in patients with osteoporosis[J]. World Neurosurg, 2019, 125: e1057-e1062.
[11]Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine (Phila Pa 1976), 1990, 15(1): 11-14.
[12]Yson S C, Sembrano J N, Sanders P C, et al. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation[J]. Spine (Phila Pa 1976), 2013, 38(4): E251-E258.
[13]Moshirfar A, Jenis L G, Spector L R, et al. Computed tomography evaluation of superior-segment facet-joint violation after pedicle instrumentation of the lumbar spine with a midline surgical approach[J]. Spine (Phila Pa 1976), 2006, 31(22): 2624-2629.
[14]Petrone S, Marengo N, Ajello M, et al. Cortical bone trajectory techniques outcomes and procedures for posterior lumbar fusion: a retrospective study[J]. J Clin Neurosci, 2020, 76: 25-30.
[15]Matsukawa K, Yato Y, Kato T, et al. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique[J]. Spine (Phila Pa 1976), 2014, 39(4): E240-E245.
[16]Kim J, Rajadurai J, Choy W J, et al. Three-dimensional patient-specific guides for intraoperative navigation for cortical screw trajectory pedicle fixation[J]. World Neurosurg, 2019, 122: 674-679.
[17]Li H M, Zhang R J, Shen C L. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis[J]. Spine (Phila Pa 1976), 2020, 45(2): E111-E119.
[18]Hung C W, Wu M F, Hong R T, et al. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory[J]. Clin Neurol Neurosurg, 2016, 145: 41-45.
[19]李越, 刘玉增, 潘爱星, 等. 皮质骨轨迹螺钉技术在脊柱外科的应用[J]. 中华医学杂志, 2021, 101(45): 3762-3766.
[20]Crawford N R, Yüksel K Z, Dog∨an S, et al. Trajectory analysis and pullout strength of self-centering lumbar pedicle screws[J]. J Neurosurg Spine, 2009, 10(5): 486-491.
[21]Jiang B W, Pennington Z, Azad T, et al. Robot-assisted versus freehand instrumentation in short-segment lumbar fusion: experience with real-time image-guided spinal robot[J]. World Neurosurg, 2020, 136: e635-e645.
[22]Le X F, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison[J]. World Neurosurg, 2018, 120: e745-e751.
[23]Zhang L A, Tian N F, Yang J, et al. Risk of pedicle and spinous process violation during cortical bone trajectory screw placement in the lumbar spine[J]. BMC Musculoskelet Disord, 2020, 21(1): 536.
[24]Kumar K K, Parikh B, Jabarkheel R, et al. Fluoroscopic versus CT-guided cortical bone trajectory pedicle screw fixation: comparing trajectory related complications[J]. J Clin Neurosci, 2021, 89: 354-359.
[25]Dayani F, Chen Y R, Johnson E, et al. Minimally invasive lumbar pedicle screw fixation using cortical bone trajectory-screw accuracy, complications, and learning curve in 100 screw placements[J]. J Clin Neurosci, 2019, 61: 106-111.
[26]Dabbous B, Brown D, Tsitlakidis A, et al. Clinical outcomes during the learning curve of MIDline Lumbar Fusion (MIDLF) using the cortical bone trajectory[J]. Acta Neurochir (Wien), 2016, 158(7):1413-1420.
[27]Kam J K T, Gan C, Dimou S, et al. Learning curve for robot-assisted percutaneous pedicle screw placement in thoracolumbar surgery[J]. Asian Spine J, 2019, 13(6): 920-927.
[28]徐子航, 龙浩, 何祖波, 等. 机器人辅助皮质骨轨迹螺钉内固定术治疗腰椎退行性疾病的置钉准确率及学习曲线分析[J]. 中国脊柱脊髓杂志, 2022, 32(4): 305-312.
|