[1]Pardi N, Hogan M J, Porter F W, et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4): 261-279.
[2]Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes[J]. J Control Release, 2015, 217: 345-351.
[3]Gebre M S, Brito L A, Tostanoski L H, et al. Novel approaches for vaccine development[J]. Cell, 2021, 184(6): 1589-1603.
[4]Karikó K, Buckstein M, Ni H P, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2): 165-175.
[5]Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Mol Ther, 2008, 16(11): 1833-1840.
[6]Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA[J]. Nucleic Acids Res, 2011, 39(21): e142.
[7]Meo S A, Bukhari I A, Akram J, et al. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines[J]. Eur Rev Med Pharmacol Sci, 2021, 25(3): 1663-1669.
[8]Verbeke R, Lentacker I, De Smedt S C, et al. The dawn of mRNA vaccines: the COVID-19 case[J]. J Control Release, 2021, 333: 511-520.
[9]Wang Y, Zhang Z Q, Luo J W, et al. mRNA vaccine: a potential therapeutic strategy[J]. Mol Cancer, 2021, 20(1): 33.
|