首都医科大学学报 ›› 2024, Vol. 45 ›› Issue (4): 693-700.doi: 10.3969/j.issn.1006-7795.2024.04.020

• 临床研究 • 上一篇    下一篇

人工智能辅助诊断系统对急性白血病诊断价值 Meta 分析

张达谦,  张晓欣,  叶子晨,  谢芷兰,  杨继春,  江  宇*   

  1. 中国医学科学院北京协和医学院群医学及公共卫生学院, 北京  100730
  • 收稿日期:2023-12-07 出版日期:2024-08-21 发布日期:2024-07-08
  • 通讯作者: 江 宇 E-mail:jiangyu@pumc.edu.cn
  • 基金资助:
    中国医学科学院医学与健康科技创新工程(2016-I2M-1-008)。

Diagnostic value of artificial intelligence assisted diagnostic system for acute leukemia: a Meta-analysis

Zhang Daqian, Zhang Xiaoxin, Ye Zichen, Xie Zhilan, Yang Jichun, Jiang Yu*   

  1. School of Population Medicine and Public Health,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2023-12-07 Online:2024-08-21 Published:2024-07-08
  • Supported by:
    This study was supported by the Chinese Academy of Medical Sciences Innovation Fund(2016-I2M-1-008)

摘要: 目的  应用Meta分析综合评价的人工智能(artificial intelligence,AI)技术辅助诊断急性白血病的潜在价值。方法  研究人员对Ovid-Medline、Embase、IEEE Xplore和Cochrane Library等四个数据库进行系统检索,截至2023年6月1日,以“人工智能、急性白血病、骨髓穿刺、血涂片、辅助诊断分析”为主题词进行检索,对纳入的文献采用Stata 17.0,RevMan 5.4和Meta-Disc 1.4软件进行了Meta分析。结果  共纳入了15项研究涵盖了20 214张图像,合并灵敏度、特异度、阳性似然比(positive likelihood ratio, PLR)、阴性似然比(negative likelihood ratio, NLR)、诊断比值比(diagnostic odds ratio, DOR)分别为0.96 (95% CI:0.92~0.97), 0.97 (95% CI:0.94~0.98), 29.9 (95% CI:17.2~51.9), 0.05 (95% CI:0.03~0.08), 652 (95% CI:290~ 1 464),绘制综合受试者工作特征曲线(summary  receiver operating characteristic,SROC),计算曲线下面积(area under the curve,AUC)为0.99。Deeks漏斗图表明不存在发表偏倚,=0.083。结论  AI技术在急性白血病筛查及早期诊断时的灵敏度、特异度及AUC值均较高,具有临床推广应用的潜在价值,由于本文纳入研究的数量和质量的局限性,使得研究间存在显著的异质性,未来需要对这种异质性的潜在来源进行进一步的分析,为急性白血病AI辅助诊断规范化提供更加准确依据。本研究已在PROSPERO注册(编号:CRD42023480455)。


关键词: 人工智能, 急性白血病, 诊断, 筛查

Abstract: Objective  Using Meta-analysis to comprehensively evaluate the potential  of artificial intelligence(AI) in assisting the diagnosis of acute leukemia. Methods  We delved into databases including Ovid-Medline, Embase, IEEE and Cochrane Library, meticulously hunting for trials that hamessed AI for diagnosing acute leukemia .Our search spanned from inception until May 1st, 2023. After sifting through literature and data extraction by two independent reviewers, and subsequent evaluation of the potential bias in the selected studies, we conducted Meta-analysis using Stata 17.0, RevMan 5.4 and Meta-Disc 1.4 software to obtain the results.  Results  Analysis a total of 15 studies, involving a whopping 20 214 images. The Meta-analysis results that the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio(NLR), diagnostic odds ratio (DOR), for AI-assisted acute leukemia screening stood at 0.96 (95% CI: 0.92-0.97), 0.97 (95% CI: 0.94-0.98), 29.9 (95% CI: 17.2-51.9), 0.05 (95% CI: 0.03-0.08), 652 (95% CI: 290-1 464), and a staggering 97%, respectively. The area under the curve (AUC) on the summary receiver operating characteristic (SROC) graph clocked in at 0.99 (95% CI: 0.98-1.0).  Conclusions  AI technology has high sensitivity, specificity and higher AUC value in screening and early diagnosis of acute leukemia,It has potential clinical application value, however, Due to limitations in the quantity and quality of included studies causing significant heterogeneity between studies, further analysis is needed on the potential sources of this heterogeneity, provide more accurate and reliable basis for the standardization of AI assisted diagnosis in acute leukemia. This study has been registered with PROSPERO registration number CRD42023480455.


Key words: artifical intelligence,  , acute leukemia,  , diagnosis,  , screening

中图分类号: