首都医科大学学报 ›› 2024, Vol. 45 ›› Issue (5): 788-794.doi: 10.3969/j.issn.1006-7795.2024.05.007

• 智能骨科的研究进展 • 上一篇    下一篇

脊柱无创示踪装置在静态和术中动态环境下的临床精度研究

范明星1,房彦名1,何睿2,张琦1,段星光2,何达1*   

  1. 1.首都医科大学附属北京积水潭医院脊柱外科国家骨科医学中心, 北京 100035;2.北京理工大学机电工程学院,北京 100081
  • 收稿日期:2024-06-24 出版日期:2024-10-21 发布日期:2024-10-18
  • 通讯作者: 何达 E-mail:hedamd@vip.163.com
  • 基金资助:
    国家自然科学基金青年项目(82302353),北京市自然科学基金-海淀原始创新联合基金资助项目(L212062)。

Clinical tracking accuracy of non-invasive tracking device in static and dynamic environments

Fan Mingxing1,Fang Yanming1, He Rui2, Zhang Qi1,Duan Xingguang2,He Da1*   

  1. 1.Department of Spinal Surgery, Beijing Jishuitan Hospital, Capital Medical University,National Center for Orthopedics,  Beijing  100035,China;2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing  100081,China
  • Received:2024-06-24 Online:2024-10-21 Published:2024-10-18
  • Supported by:
    This study was supported by National Natural Science Foundation Youth Project of China(82302353), Beijing Natural Science Foundation-Haidian Original Innovation Foundation  (L212062).

摘要: 目的  本研究旨在探讨新型无创示踪系统在静态和动态环境下的临床精度表现。方法  该系统由无创示踪装置和光学导航设备组成。在静态环境下,使用术中C臂电子计算机断层扫描(computed tomography,CT)扫描脊椎模型,通过CT图像空间中的标记点进行实时自动化配准,测量无创示踪装置配准精度和8个体表验证点的配准精度。将无创示踪装置与连接于椎体的刚性示踪装置进行比较,测量椎弓根螺钉导针在体表下3~4 cm处螺钉入点位置误差和体表下8~9 cm处螺钉终点位置误差,以及导针整体规划路径与实际路径的角度误差。本研究中前期构建了呼吸运动下脊柱椎体运动模型以仿真术中椎体的动态环境,通过机械臂进行伺服模拟呼吸运动构建术中动态环境,并在术中同法测量动态环境下的无创示踪器临床精度。结果  无创示踪器配准误差较小,静态环境下为(0.483±0.242)mm,动态环境下为(0.524±0.229)mm。无创示踪装置内部区域的配准误差低于外部区域的配准误差,静态环境下为[(0.472±0.202) mm vs (0.954±0.279 )mm,P <0.001],动态环境下为[(0.516±0.188) mm vs  (1.029±0.252 )mm,P<0.001]。8条导针入路的骨表面入点精度高于骨内部终点精度,体表下3~4 cm处位置误差小于8~9 cm处,静态环境下为[(0.018±0.024) mm vs (0.061±0.061) mm, P=0.002],动态环境下为[(0.403±0.275) mm vs (0.938±0.640) mm,P<0.001]。导针入路的角度误差较小,静态环境下< 0.25°,动态环境下 < 1.50°。结论  在静态环境下,无创示踪器对体表区域和深部区域均保持较高位置精度和角度精度,在动态环境中,体表区域和深部区域的定位精度和角度精度降低,但仍在可接受的范围内。

关键词: 无创示踪装置, 静态环境, 动态环境, 精度

Abstract: Objective  ObjectiveTo explore the accuracy performance of the newly designed non-invasive tracking system in static and dynamic environments.Methods  The system consists of a non-invasive tracking device and an optical navigation device. In a static environment, the spinal model was scanned by intraoperative C-arm computed tomography (CT), and the marker points in the CT image space were selected for real-time automatic registration. The registration accuracy of the non-invasive tracking device and the registration accuracy of 8 body surface verification points were measured. The non-invasive tracking device was compared with the rigid tracking device connected to the vertebral body, and the position error of the vertebral bone surface point at 3-4 cm below the body surface and the position error of the vertebral internal point at 8-9 cm below the body surface were measured, as well as the angular error between the overall planned path of the guide needle and the actual path. In the previous study, we constructed a spinal vertebral motion model under respiratory motion to simulate the dynamic environment of the vertebral body during surgery. The dynamic environment simulates intraoperative breathing motion through robotic arm servo motion, and the dynamic environment accuracy measurement method was the same as that of the static environment.Results  The non-invasive tracking device registration error was small, (0.483±0.242) mm in static conditions and (0.524±0.229) mm in dynamic conditions. The  registration error of the internal area of the non-invasive tracking device was lower than that of the external area of the non-invasive tracking device, [(0.472±0.202) mm vs (0.954±0.279) mm,P <0.001] in static conditions and [(0.516±0.188) mm vs (1.029±0.252) mm,P<0.001] in dynamic conditions. The accuracy of the bone surface points and the bone internal points of the 8 guide needle approaches was related to the distance of the non-invasive tracking device. The  position error at 3-4 cm below the body surface was smaller than that at 8-9 cm, [(0.018±0.024)mm vs (0.061±0.061) mm, P=0.002] in static conditions and [(0.403±0.275) mm vs (0.938±0.640) mm,P<0.001] in dynamic conditions. The  angle error of the needle approach is small, <0.25° in static environment and <1.50° in dynamic environment.Conclusions  In a static environment, the non-invasive tracking device maintains high position accuracy and angular accuracy for both the surface and deep areas of the body. In a dynamic environment, the positioning accuracy and angular accuracy of the surface and deep areas of the body are reduced, but are still within an acceptable range.

Key words: non-invasive tracking device, static environment, dynamic environment, accuracy

中图分类号: