[1]Moerschel K S, De Bacquer D, De Backer G, et al. Assessing the probability of risk factor control in patients with coronary heart disease: results from the ESC-EORP EUROASPIRE V survey[J]. Eur J Prev Cardiol, 2022, 29(10): 1465-1475.
[2]Roy E, Psych C. Cognitive function[M]//Gellman M D, Turner J R. Encyclopedia of Behavioral Medicine. New York: Springer, 2013: 448-449.
[3]Eggermont L H P, de Boer K, Muller M, et al. Cardiac disease and cognitive impairment: a systematic review[J]. Heart, 2012, 98(18): 1334-1340.
[4]Haring B, Leng X Y, Robinson J, et al. Cardiovascular disease and cognitive decline in postmenopausal women: results from the Women's Health Initiative Memory Study[J]. J Am Heart Assoc, 2013, 2(6): e000369.
[5]Volonghi I, Pendlebury S T, Welch S J V, et al. Cognitive outcomes after acute coronary syndrome: a population based comparison with transient ischaemic attack and minor stroke[J]. Heart, 2013, 99(20): 1509-1514.
[6]Ikram M A, Hollander M, Bos M J, et al. Unrecognized myocardial infarction and the risk of stroke: the Rotterdam Study[J]. Neurology, 2006, 67(9): 1635-1639.
[7]Barclay L L, Weiss E M, Mattis S, et al. Unrecognized cognitive impairment in cardiac rehabilitation patients[J]. J Am Geriatr Soc, 1988, 36(1): 22-28.
[8]Zheng L, Mack W J, Chui H C, et al. Coronary artery disease is associated with cognitive decline independent of changes on magnetic resonance imaging in cognitively normal elderly adults[J]. J Am Geriatr Soc, 2012, 60(3): 499-504.
[9]Singh-Manoux A, Sabia S, Lajnef M, et al. History of coronary heart disease and cognitive performance in midlife: the Whitehall Ⅱ study[J]. Eur Heart J, 2008, 29(17): 2100-2107.
[10]Liang J,Pan Y, Zhang W Y, et al. Associations between atherosclerosis and subsequent cognitive decline: a prospective cohort study[J]. J Am Heart Assoc, 2024, 13(21): e036696.
[11]Vishwanath S, Hopper I, Wolfe R, et al. Cognitive trajectories and incident dementia after a cardiovascular event in older adults[J]. Alzheimers Dement, 2023, 19(8): 3670-3678.
[12]Weinstein G, Goldbourt U, Tanne D. Angina pectoris severity among coronary heart disease patients is associated with subsequent cognitive impairment[J]. Alzheimer Dis Assoc Disord, 2015, 29(1): 6-11.
[13]Narvaez Linares N F, Poitras M, Burkauskas J, et al. Neuropsychological sequelae of coronary heart disease in women: a systematic review[J]. Neurosci Biobehav Rev, 2021, 127: 837-851.
[14]Deckers K, Schievink S H J, Rodriquez M M F, et al. Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis[J]. PLoS One, 2017, 12(9): e0184244.
[15]Roberts R O, Knopman D S, Geda Y E, et al. Coronary heart disease is associated with non-amnestic mild cognitive impairment[J]. Neurobiol Aging, 2010, 31(11): 1894-1902.
[16]Stewart R A H, Held C, Krug-Gourley S, et al. Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease[J]. J Am Heart Assoc, 2019, 8(7): e010641.
[17]Evans D A, Beckett L A, Albert M S, et al. Level of education and change in cognitive function in a community population of older persons[J]. Ann Epidemiol, 1993, 3(1): 71-77.
[18]Xia C Y, Vonder M, Sidorenkov G, et al. Coronary artery calcium and cognitive function in dutch adults: cross-sectional results of the population-based ImaLife study[J]. J Am Heart Assoc, 2021, 10(4): e018172.
[19]Xie W, Zheng F, Yan L, et al.Cognitive decline before and after incident coronary events[J]. J Am Coll Cardiol, 2019, 73(24): 3041-3050.
[20]Jinawong K, Apaijai N, Piamsiri C, et al. Mild cognitive impairment occurs in rats during the early remodeling phase of myocardial infarction[J]. Neuroscience, 2022, 493: 31-40.
[21]Gottesman R F, Grega M A, Bailey M M, et al. Association between hypotension, low ejection fraction and cognitive performance in cardiac patients[J]. Behav Neurol, 2010, 22(1/2): 63-71.
[22]Almeida O P, Beer C, Lautenschlager N T, et al. Two-year course of cognitive function and mood in adults with congestive heart failure and coronary artery disease: the heart-mind study[J]. Int Psychogeriatr, 2012, 24(1): 38-47.
[23]Greaves D, Psaltis P J, Davis D H J, et al. Risk factors for delirium and cognitive decline following coronary artery bypass grafting surgery: a systematic review and meta-analysis[J]. J Am Heart Assoc, 2020, 9(22): e017275.
[24]Greaves D, Psaltis P J, Ross T J, et al. Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients[J]. Int J Cardiol, 2019, 289: 43-49.
[25]Newman M F, Kirchner J L, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery[J]. N Engl J Med, 2001, 344(6): 395-402.
[26]Holinski S, Claus B, Barajas T, et al. Cerebroprotective effect of preoperative dual antiplatelet therapy in patients undergoing coronary bypass surgery[J]. Ann Thorac Cardiovasc Surg, 2014, 20(1): 38-43.
[27]Sundbøll J, Horváth-Puhó E, Adelborg K, et al. Higher risk of vascular dementia in myocardial infarction survivors[J]. Circulation, 2018, 137(6): 567-577.
[28]Duijndam S, Denollet J, Nyklícˇek I, et al. Perceived cognition after percutaneous coronary intervention: association with quality of life, mood and fatigue in the THORESCI study[J]. Int J Behav Med, 2017, 24(4): 552-562.
[29]Jurga J, Tornvall P, Dey L. Does coronary angiography and percutaneous coronary intervention affect cognitive function?[J]. Am J Cardiol, 2016, 118(10): 1437-1441.
[30]Selnes O A, Grega M A, Bailey M M, et al. Do management strategies for coronary artery disease influence 6-year cognitive outcomes?[J]. Ann Thorac Surg, 2009, 88(2): 445-454.
[31]L. Lanctôt K, O'Regan J, Schwartz Y, et al. Assessing cognitive effects of anticholinergic medications in patients with coronary artery disease[J]. Psychosomatics, 2014, 55(1): 61-68.
[32]Burkauskas J, Noreikaite A, Bunevicius A, et al. Beta-1-selective beta-blockers and cognitive functions in patients with coronary artery disease: a cross-sectional study[J]. J Neuropsychiatry Clin Neurosci, 2016, 28(2): 143-146.
[33]Hilkens N A, Algra A, Kappelle L J, et al. Early time course of major bleeding on antiplatelet therapy after TIA or ischemic stroke[J]. Neurology, 2018, 90(8): e683-e689.
[34]Le D, Brown L, Malik K, et al. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging[J]. Int J Mol Sci, 2021, 22(24): 13178.
[35]Wu Y N, Chen L W, Zhong F, et al. Cognitive impairment in patients with heart failure: molecular mechanism and therapy[J]. Heart Fail Rev, 2023, 28(4): 807-820.
[36]Hu Z C, Ding L G, Yao Y. Atrial fibrillation: mechanism and clinical management[J]. Chin Med J (Engl), 2023, 136(22): 2668-2676.
[37]Benjamin E J, Virani S S, Callaway C W, et al. Heart disease and stroke statistics-2018 update: a report from the American heart association[J]. Circulation, 2018, 137(12): e493.
[38]Mun H, Shim J Y, Kimm H, et al. Associations between Korean coronary heart disease risk score and cognitive function in dementia-free Korean older adults[J]. J Korean Med Sci, 2023, 38(2): e11.
[39]Testai F D, Gorelick P B, Chuang P Y, et al. Cardiac contributions to brain health: a scientific statement from the american heart association[J]. Stroke, 2024, 55(12): e425-e438.
[40]Tini G, Scagliola R, Monacelli F, et al. Alzheimers disease and cardiovascular disease: a particular association[J]. Cardiol Res Pract, 2020, 2020: 2617970.
[41]Yun M, Nie B, Wen W, et al. Assessment of cerebral glucose metabolism in patients with heart failure by 18F-FDG PET/CT imaging[J]. J Nucl Cardiol, 2022, 29(2): 476-488.
[42]Haratz S, Weinstein G, Molshazki N, et al. Impaired cerebral hemodynamics and cognitive performance in patients with atherothrombotic disease[J]. J Alzheimers Dis, 2015, 46(1): 137-144.
[43]Shah A, Chen C, Campanella C, et al. Brain correlates of stress-induced peripheral vasoconstriction in patients with cardiovascular disease[J]. Psychophysiology, 2019, 56(2): e13291.
[44]Kempuraj D, Dourvetakis K D, Cohen J, et al. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders[J]. Front Cell Neurosci, 2024, 18: 1491952.
[45]Tan Z S, Beiser A S, Fox C S, et al. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study[J]. Diabetes Care, 2011, 34(8): 1766-1770.
[46]Stakos D A, Stamatelopoulos K, Bampatsias D, et al. The Alzheimer's disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar[J]. J Am Coll Cardiol, 2020, 75(8): 952-967.
[47]Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease[J]. Neuron, 2017, 96(1): 17-42.
[48]Severino P, D'Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction[J]. Int J Mol Sci, 2020, 21(21): 8118.
[49]Zhao B X, Li T F, Fan Z R, et al. Heart-brain connections: phenotypic and genetic insights from magnetic resonance images[J]. Science, 2023, 380(6648): abn6598.
[50]Hagenaars S P, Harris S E, Clarke T K, et al. Polygenic risk for coronary artery disease is associated with cognitive ability in older adults[J]. Int J Epidemiol, 2016, 45(2): 433-440.
[51]de Silva E, Sudre C H, Barnes J, et al. Polygenic coronary artery disease association with brain atrophy in the cognitively impaired[J]. Brain Commun, 2022, 4(6): fcac314.
[52]Stanek K M, Gunstad J, Spitznagel M B, et al. Improvements in cognitive function following cardiac rehabilitation for older adults with cardiovascular disease[J]. Int J Neurosci, 2011, 121(2): 86-93.
[53]Bethge M, Thome-Soós F, Raóo L M, et al. Cognitive-behavioral rehabilitation in patients with cardiovascular diseases: a randomized controlled trial (CBR-CARDIO, DRKS00029295)[J]. BMC Cardiovasc Disord, 2023, 23(1): 252.
[54]Saklıca D, Vardar-Yagˇli N, Ateş A H, et al. Does cognitive function affect functional capacity and perceived fatigue severity after exercise in patients with coronary artery disease?[J]. Physiother Res Int, 2024, 29(4): e2139.
[55]Saleem M, Herrmann N, Dinoff A, et al. Association between endothelial function and cognitive performance in patients with coronary artery disease during cardiac rehabilitation[J]. Psychosom Med, 2019, 81(2): 184-191.
[56]Anazodo U C, Shoemaker J K, Suskin N, et al. An investigation of changes in regional gray matter volume in cardiovascular disease patients, pre and post cardiovascular rehabilitation[J]. Neuroimage Clin, 2013, 3: 388-395.
[57]Anazodo U C, Shoemaker J K, Suskin N, et al. Impaired cerebrovascular function in coronary artery disease patients and recovery following cardiac rehabilitation[J]. Front Aging Neurosci, 2015, 7: 224.
[58]Bérubé B, Boidin M, Gayda M, et al. Acute effects of exercise on cerebrovascular response and cognitive performance in individuals with stable coronary heart disease[J]. Brain Res, 2021, 1772: 147671.
[59]Li Y L. Stellate ganglia and cardiac sympathetic overactivation in heart failure[J]. Int J Mol Sci, 2022, 23(21): 13311.
[60]Zhang J, Liu Y, Li H J, et al. Stellate ganglion block improves postoperative cognitive dysfunction in aged rats by SIRT1-mediated white matter lesion repair[J]. Neurochem Res, 2022, 47(12): 3838-3853.
[61]Williamson J D, Pajewski N M, Auchus A P, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial[J]. JAMA, 2019, 321(6): 553-561.
[62]Hajduk A M, Saczynski J S, Tsang S, et al. Presentation, treatment, and outcomes of older adults hospitalized for acute myocardial infarction according to cognitive status: the SILVER-AMI study[J]. Am J Med, 2021, 134(7): 910-917.
[63]Ishihara K, Izawa K P, Kitamura M, et al. Impact of mild cognitive impairment on unplanned readmission in patients with coronary artery disease[J]. Eur J Cardiovasc Nurs, 2022, 21(4): 348-355.
|