[1] Reddy C D, Lopez L, Ouyang D, et al. Video-based deep learning for automated assessment of left ventricular ejection fraction in pediatric patients[J]. J Am Soc Echocardiogr, 2023, 36(5): 482-489.
[2] Xue W F, Li J H, Hu Z Q, et al. Left ventricle quantification challenge: a comprehensive comparison and evaluation of segmentation and regression for mid-ventricular short-axis cardiac MR data[J]. IEEE J Biomed Health Inform, 2021, 25(9): 3541-3553.
[3] 黄晶晶. 脑部MR图像多阈值处理与边缘检测[J]. 计算机与数字工程, 2013, 41(10): 1672-1675.
[4] 洪容容, 叶少珍. 基于改进的区域生长鼻咽癌MR医学图像分割[J]. 福州大学学报:自然科学版, 2014, 42(5): 683-687, 736.
[5] 李季, 胡锦萍. 基于深度学习的非零水平集保凸的左心室分割[J]. 光电子·激光, 2024, 35(6): 596-603.
[6] Chen C, Qin C, Qiu H Q, et al. Deep learning for cardiac image segmentation: a review[J]. Front Cardiovasc Med, 2020, 7: 25.
[7] Huang S Y, Hsu W L, Hsu R J, et al. Fully convolutional network for the semantic segmentation of medical images: a survey[J]. Diagnostics, 2022, 12(11): 2765.
[8] Yin X X, Sun L, Fu Y H, et al. U-net-based medical image segmentation[J]. J Healthc Eng, 2022, 2022: 4189781.
[9] Ng M, Guo F M, Biswas L, et al. Estimating uncertainty in neural networks for cardiac MRI segmentation: a benchmark study[J]. IEEE Trans Biomed Eng, 2023, 70(6): 1955-1966.
[10] Tan L K, Liew Y M, Lim E, et al. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences[J]. Med Image Anal, 2017, 39: 78-86.
[11] Mao S T, Sejdic E. A review of recurrent neural network-based methods in computational physiology[J]. IEEE Trans Neural Netw Learn Syst, 2023, 34(10): 6983-7003.
[12] Lombardo E, Rabe M, Xiong Y Q, et al. Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy[J]. Radiother Oncol, 2023, 182: 109555.
[13] Bi N, Zakeri A, Xia Y, et al. SegMorph: concurrent motion estimation and segmentation for cardiac MRI sequences[J]. IEEE Trans Med Imaging, 2025, 44(9): 3515-3528.
[14] 徐立, 贾楠, 高琦, 等. 基于小波变换与SRAD融合的医学超声图像斑点噪声抑制[J]. 计算机测量与控制, 2024, 32(12): 184-190.
[15] 张法轮, 施展. 磁共振成像系统尖峰噪声伪影解决方案[J]. 医疗装备, 2023, 36(22): 110-112, 115.
[16] Kascenas A, Sanchez P, Schrempf P, et al. The role of noise in denoising models for anomaly detection in medical images[J]. Med Image Anal, 2023, 90: 102963.
[17] 邢笑笑, 李杰. 空域滤波图像去噪算法研究[J]. 电子技术与软件工程, 2022(16): 144-147.
[18] 章文婧. 医学图像去噪技术研究[D]. 广州: 华南理工大学, 2018.
[19] 张湘怡. 基于深度学习的生物医学图像去噪方法研究[D]. 大连: 辽宁师范大学, 2023.
[20] Wu D F, Kim K, Li Q Z. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning[J]. Med Phys, 2021, 48(12): 7657-7672.
[21] Vasylechko S, Afacan O, Kurugol S. Self-supervised denoising diffusion probabilistic models for abdominal DW-MRI[J]. Comput Diffus MRI, 2023, 14328:80-91.
[22] Kazerouni A, Aghdam E K, Heidari M, et al. Diffusion models in medical imaging: a comprehensive survey[J]. Med Image Anal, 2023, 88: 102846.
[23] Xiang T G, Yurt M, Syed A B, et al. DDM2: self-supervised diffusion MRI denoising with generative diffusion models[EB/OL]. (2023-02-06)[2024-12-01]. https://arxiv.org/abs/2302.03018.
[24] Bernard O, Lalande A, Zotti C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525.
[25] Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256.
[26] 何奕松, 蒋家良, 余行, 等. 影像分割中Dice系数和Hausdorff距离的比较[J]. 中国医学物理学杂志, 2019, 36(11): 1307-1311.
[27] 吕佳, 王泽宇. 基于深度学习的视网膜血管分割方法综述[J]. 重庆师范大学学报:自然科学版, 2024, 41(4): 110-125.
[28] Zhang W J. The feature enhancement method of artistic images based on histogram equalization and bilateral filtering[J]. PeerJ Comput Sci, 2024, 10: e2109.
[29] Mackenzie M, Tieu K. Gaussian filters and filter synthesis using a Hermite/Laguerre neural network[J]. IEEE Trans Neural Netw, 2004, 15(1): 206-214.
[30] Mishiba K. Fast guided median filter[J]. IEEE Trans Image Process, 2023, 32: 737-749.
[31] Qiao Z W, Redler G, Epel B, et al. A balanced total-variation-Chambolle-pock algorithm for EPR imaging[J]. J Magn Reson, 2021, 328: 107009.
[32] 许蓉, 王直, 宗涛. 基于改进高斯滤波的医学图像边缘增强[J]. 信息技术, 2020, 44(4): 75-78.
[33] 边海丽. 医学超声斑点分布分析及去噪[D]. 杭州: 浙江大学, 2013.
[34] 万里勇, 陈家益. 基于双树复小波变换与双边滤波的图像滤波[J]. 华中师范大学学报:自然科学版, 2021, 55(6): 1030-1036.
[35] 呼亚萍, 孔韦韦, 李萌, 等. 改进TV图像去噪模型的全景图像拼接算法[J]. 计算机工程与应用, 2021, 57(17): 203-209.
[36] Chen L, Huang S H, Wang T H, et al. Automatic 3D left atrial strain extraction framework on cardiac computed tomography[J]. Comput Methods Programs Biomed, 2024, 252: 108236.
[37] 张亮, 洪林巍. 左心房容积指数与左心房前后径评价左心室舒张功能的一致性[J]. 中国医科大学学报, 2024, 53(9): 798-803,808.
[38] 王晶, 李玉宏. 三维全自动左心室容积定量技术在评价冠状动脉粥样硬化性心脏病患者左心收缩功能中的应用[J]. 中国医科大学学报, 2021, 50(10): 925-929.
[39] 邢丽丽, 黄蕾, 赵白信, 等. 三维超声心动图参数对二叶式主动脉瓣重度狭窄患者经导管主动脉瓣置换术后左心室逆重构的评估价值 [J/OL]. 实用临床医药杂志,
|