[1] Leroy E M, Baize S, Volchkov V E, et al. Human asymptomatic Ebola infection and strong inflammatory response[J]. Lancet, 2000, 355(9222): 2210-2215.[2] WHO. Ebola virus disease; Fact sheet N°103. [EB/OL] [2014-09-10]. http://www.who.int/mediacentre/factsheets/fs103/en/.).[3] Sullivan N, Yang Z Y, Nabel G J. Ebola virus pathogenesis: implications for vaccines and therapies[J]. J virology, 2003, 77(18): 9733-9737.[4] Geisbert T W, Hensley L E, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection[J]. Am J Pathol, 2003, 163(6):2347-2370.[5] Davis K J, Anderson A O, Geisbert T W, et al. Pathology of experimental Ebola virus infection in African green monkeys[J]. Involvement of fibroblastic reticular cells. Arch Pathol Labo Med, 1997, 121(8): 805-819.[6] Feldmann H, Bugany H, Mahner F, et al. Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages[J]. J Virology, 1996, 70(4): 2208-2214.[7] Geisbert T W, Young H A, Jahrling P B, et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells[J]. Am J Pathol, 2003, 163(6): 2371-2382.[8] Wauquier N, Becquart P, Padilla C, et al. Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis[J]. PLoS neglected trop Dis, 2010, 4(10): e837.[9] Villinger F, Rollin P E, Brar S S, et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection[J]. J Infect Dis, 1999, 179 Suppl 1: S188-191.[10] Baize S, Leroy E M, Georges A J, et al. Inflammatory responses in Ebola virus-infected patients[J]. Clin Exp Immunol, 2002, 128(1): 163-168.[11] Sobarzo A, Ochayon D E, Lutwama J J, et al. Persistent immune responses after Ebola virus infection[J]. N Eng J Med, 2013, 369(5): 492-493.[12] Lubaki N M, Ilinykh P, Pietzsch C, et al. The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains[J]. J virology, 2013, 87(13): 7471-7485.[13] Hartman A L, Bird B H, Towner J S, et al. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus[J]. J virology, 2008, 82(6): 2699-2704.[14] Basler C F, Mikulasova A, Martinez-Sobrido L, et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3[J]. J virology, 2003, 77(14): 7945-7956.[15] Mateo M, Reid S P, Leung L W, et al. Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling[J]. J virology, 2010, 84(2): 1169-1175.[16] Feng Z, Cerveny M, Yan Z, et al. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR[J]. J virology, 2007, 81(1): 182-192.[17] Kash J C, Muhlberger E, Carter V, et al. Global suppression of the host antiviral response by Ebola and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence[J]. J virology, 2006, 80(6): 3009-3020.[18] Horvath C J, Ferro T J, Jesmok G, et al. Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrophils[J]. Proc Nat Acad Sci USA, 1988, 85(23): 9219-9223.[19] Nawroth P P, Bank I, Handley D, et al. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1[J]. J Exp Med, 1986, 163(6): 1363-1375.[20] Yang Z Y, Duckers H J, Sullivan N J, et al. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury[J]. Nature medicine, 2000, 6(8): 886-889.[21] Wahl-Jensen V, Kurz S, Feldmann F, et al. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression[J]. PLoS Neglected Trop Dis, 2011, 5(10): e1359. |