[1] Qian W, Xiong X, Fang Z, et al. Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury[J]. Evid Based Complement Alternat Med, 2014, 2014:107501. [2] Badalzadeh R, Yousefi B, Majidinia M, et al. Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: activation of nitric oxide system and mitochondrial KATP channel[J]. J Physiol Sci, 2014, 64(6):393-400. [3] Vinten-Johansen J, Shi W. The science and clinical translation of remote postconditioning[J]. J Cardiovasc Med (Hagerstown), 2013, 14(3):206-213. [4] Szentmiklosi A J, Cseppento A, Harmati G, et al. Novel trends in the treatment of cardiovascular disorders: site-and event-selective adenosinergic drugs[J].Curr Med Chem, 2011, 18(8):1164-1187. [5] Yan S F, Ramasamy R, Schmidt A M. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging[J].Biochem Pharmacol, 2010, 79(10):1379-1386. [6] Guo C, Zeng X, Song J, et al. A soluble receptor for advanced glycation end-products inhibits hypoxia/reoxygenation-induced apoptosis in rat cardiomyocytes via the mitochondrial pathway[J]. Int J Mol Sci, 2012, 13(9):11923-11940. [7] Pan Z, Sun X, Ren J, et al. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models[J].PLoS One, 2012, 7(11):e50515. [8] Shang L, Ananthakrishnan R, Li Q, et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways[J]. PLoS One,2010, 5(4):e10092. [9] Das A, Xi L, Kukreja R C. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling[J]. J Biol Chem, 2005, 280(13):12944-12955. [10] Smith C C, Dixon R A, Wynne A M, et al. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore[J]. Am J Physiol Heart Circ Physiol,2010, 299(4):H1265-1270. [11] Yin T, Hou R, Liu S, et al. Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury[J]. J Mol Cell Cardiol, 2010, 49(3):354-361. [12] Wang K, Zhang J, Liu J, et al. Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death: Omi/HtrA2 and aged heart injury[J]. Age (Dordr),2013,35(3):733-746. [13] Yang K, Zhang T P, Tian C, et al. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling[J]. Am J Hypertens,2012, 25(9):994-1001. [14] Eltzschig H K, Eckle T. Ischemia and reperfusion-from mechanism to translation[J]. Nat Med,2011, 17(11):1391-1401. [15] 熊瑞媛, 田炜,杨方. 细胞凋亡途径在心肌缺血/再灌注损伤中的研究进展[J]. 中国煤炭工业医学杂志, 2015,18(3):512-515. [16] 唐丽敏, 贺永贵,张义东,等. 心肌缺血/再灌注损伤发生机制及其保护研究进展[J]. 中国煤炭工业医学杂志,2013,16(1):159-161. [17] 王梦然, 张健,梁艳红,等. 缺血后处理对老年大鼠心肌缺血再灌注损伤的保护作用[J]. 首都医科大学学报,2015,36(1):132-136. [18] Bucciarelli L G, Kaneko M, Ananthakrishnan R, et al. Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury[J]. Circulation,2006,113(9):1226-1234. [19] Aleshin A, Ananthakrishnan R, Li Q, et al. RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model[J]. Am J Physiol Heart Circ Physiol,2008, 294(4):H1823-1832. |