[1] Ostrom Q T, Gittleman H, Liao P, et al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014[J]. Neuro Oncol, 2017, 19(suppl_5):v1-v88. [2] Chhabda S, Carney O, D'Arco F, et al. The 2016 World Health Organization Classification of tumours of the Central Nervous System:what the paediatric neuroradiologist needs to know[J]. Quant Imaging Med Surg, 2016, 6(5):486-489. [3] Hall R D, Kudchadkar R R. BRAF mutations:signaling, epidemiology, and clinical experience in multiple malignancies[J]. Cancer Control, 2014, 21(3):221-230. [4] Jones D T W, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas[J]. Cancer Res, 2008, 68(21):8673-8677. [5] Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer-roles and therapeutic opportunities[J]. Oncogene, 2011, 30(32):3477-3488. [6] Tomić T T, Olausson J, Wilzén A, et al. A new GTF2I-BRAF fusion mediating MAPK pathway activation in pilocytic astrocytoma[J]. Plos One, 2017, 12(4):e0175638. [7] Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma[J]. Acta Neuropathol, 2011, 121(6):763-774. [8] Shin C H, Grossmann A H, Holmen S L, et al. The BRAF kinase domain promotes the development of gliomas in vivo[J]. Genes cancer, 2015, 6(1-2):9-18. [9] Schindler G, Capper D, Meyer J, et al. Analysis ofBRAFV600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma[J]. Acta Neuropathol, 2011, 121(3):397-405. [10] Kleinschmidt-DeMasters B K, Aisner D L,Birks D K,et al. Epithelioid GBMs show a high percentage of BRAF V600E mutation[J]. Am J Surg Pathol, 2013, 37(5):685-698. [11] Wang J M, Liu Z X, Cui Y, et al. Evaluation of EZH2 expression, BRAF, V600E mutation, and CDKN2A/B, deletions in epithelioid glioblastoma and anaplastic pleomorphic xanthoastrocytoma[J]. J Neurooncol, 2019144(1):137-146. [12] Tanaka S, Nakada M, Nobusawa S, et al. Epithelioid glioblastoma arising from pleomorphic xanthoastrocytoma with the BRAF V600E mutation[J]. Brain Tumor Pathol, 2014, 31(3):172-176. [13] Cicuendez M, Martinez-Saez E, Martinez-Ricarte F, et al. Combined pleomorphic xanthoastrocytoma-ganglioglioma with BRAF V600E mutation:case report[J]. J Neurosurg Pediatr, 2016, 18(1):53-57. [14] 王雷明, 付永娟, 李卓, 等. 存在BRAF V600E突变的混合性多形性黄色星形细胞瘤和节细胞胶质瘤[J]. 中国现代神经疾病杂志, 2017,17(3), 202-208. [15] Murakami C,Yammazaki T,Shintoku R, et al. Anaplastic ganglioglioma with epithelioid cell components[J]. Neuropathology, 2018, 38(5):498-502. [16] Lohkamp L N, Schinz M, Gehlhaar C, et al. MGMT promoter methylation and BRAF V600E mutations are helpful markers to discriminate pleomorphic xanthoastrocytoma from giant cell glioblastoma[J]. Plos One, 2016, 11(6):e0156422. [17] Chen X, Pan C, Zhang P, et al. BRAF V600E mutation is a significant prognosticator of the tumour regrowth rate in brainstem gangliogliomas[J]. J Clin Neurosci, 2017, 46:50-57. [18] Ho C Y, Mobley B C, Gordish-Dressman H, et al. A clinicopathologic study of diencephalic pediatric low-grade gliomas withBRAFV600 mutation[J]. Acta Neuropathol, 2015, 130(4):575-585. [19] Nakano Y,Yamasaki K,Sakamoto H,et al. A long-term survivor of pediatric midline glioma with H3F3A K27M and BRAF V600E double mutations.[J].Brain Tumor Pathol, 2019, 36(4):162-168. [20] Wong D J, Ribas A. Targeted therapy for melanoma[J]. Cancer Treat Res, 2016, 167:251-262. [21] Kaley T,Touat M, Subbiah V, et al. BRAF inhibition in BRAF-mutant gliomas:results from the VE-BASKET study[J]. J Clin Oncol, 2018,36(35):3477-3484. [22] Ceccon G, Werner J M,Dunkl V, et al. Dabrafenib treatment in a patient with an epithelioid glioblastoma and BRAF V600E mutation[J]. Int J Mol Sci, 2018, 19(4):E1090. [23] Brown N F, Carter T, Kitchen N, et al. Dabrafenib and trametinib in BRAFV600E mutated glioma[J]. Cns Oncol, 2017, 6(4):291-296. [24] Kurani H, Gurav M, Shetty O, et al. Pilocytic astrocytomas:BRAFV600E and BRAF fusion expression patterns in pediatric and adult age groups[J]. Childs Nerv Syst, 2019, 35(9):1525-1536. [25] Hawkins C, Walker E, Mohamed N, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma[J]. Clin Cancer Res, 2011, 17(14):4790-4798. [26] Dimitriadis E, Alexiou G A, Tsotsou P, et al. BRAF alterations in pediatric low grade gliomas and mixed neuronal-glial tumors[J]. J Neurooncol,2013, 113(3):353-358. [27] Lawson A R J, Tatevossian R G, Phipps K P, et al. RAF gene fusions are specific to pilocytic astrocytoma in a broad paediatric brain tumour cohort[J]. Acta Neuropathol, 2010, 120(2):271-273. [28] Yamashita S, Takeshima H,Matsumoto F,et al. Detection of the KIAA1549-BRAF fusion gene in cells forming microvascular proliferations in pilocytic astrocytoma[J]. PLoS ONE, 2019, 14(7):e0220146. [29] Sievert A J, Lang S S, Boucher K L, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas[J]. Proc Natl Acad Sci U S A, 2013, 110(15):5957-5962. [30] Jain P, Silva A, Han H J, et al. Overcoming resistance to single-agent therapy for oncogenic BRAF gene fusions via combinatorial targeting of MAPK and PI3K/mTOR signaling pathways[J]. Oncotarget, 2017, 8(49):84697-84713. [31] Breton Q, Plouhinec H, Prunier-Mirebeau D, et al. BRAF-V600E immunohistochemistry in a large series of glial and glial-neuronal tumors[J]. Brain Behav, 2017, 7(3):e00641. [32] Kim W Y, Kim H, Hwang T S, et al. Comparison between real-time PCR and pyrosequencing for detection of BRAF V600E mutation in thyroid fine-needle aspirates[J]. Appl Immunohistochem Mol Morphol, 2017, 25(5):358-365. [33] Bisschop C, Ter E A, Bosman L J, et al. Rapid BRAF mutation tests in patients with advanced melanoma:comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform[J]. Melanoma Res, 2018, 28(2):96-104. [34] Ryall S, Arnoldo A, Krishnatry R, et al. Multiplex detection of pediatric low-grade glioma signature fusion transcripts and duplications using the NanoString nCounter system[J]. J Neuropathol Exp Neurol, 2017, 76(7):562-570. [35] Tsang H F, Xue V W, Koh S P, et al. NanoString, a novel digital color-coded barcode technology:current and future applications in molecular diagnostics[J]. Expert Rev Mol Diagn, 2017, 17(1):95-103. |