[1] Xue S,Hu M,Iyer V,et al. Blocking the PD-1/PD-L1 pathway in glioma:a potential new treatment strategy[J]. J Hematol Oncol,2017,10(1):81. [2] Louis D N,Perry A,Reifenberger G,et al. The 2016 World Health Organization Classification of tumors of the central nervous system:a summary[J]. Acta Neuropathol,2016,131(6):803-820. [3] Stupp R, Hegi M E, Mason W P, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10(5):459-466. [4] Goel G, Sun W. Cancer immunotherapy in clinical practice-the past,present,and future[J]. Chin J Cancer,2014,33(9):445-457. [5] John L B,Devaud C,Duong C P,et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells[J]. Clin Cancer Res,2013,19(20):5636-5646. [6] Tanaka Y, Okamura H. Anti-PD-1 antibody:basics and clinical application[J]. Gan To Kagaku Ryoho,2013,40(9):1145-1149. [7] 王镔, 赵刚. 脑胶质瘤免疫治疗的进展与展望[J]. 中国微侵袭神经外科杂志,2018,23(11):523-526. [8] Specenier P. Ipilimumab in melanoma[J]. Expert Rev Anticancer Ther,2016,16(8):811-826. [9] Kohnke T,Krupka C,Tischer J,et al. Increase of PD-L1 expressing B-precursor all cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab[J]. J Hematol Oncol,2015,8:111. [10] Simonelli M,Persico P,Perrino M,et al. Checkpoint inhibitors as treatment for malignant gliomas:"A long way to the top"[J]. Cancer Treat Rev,2018,69:121-131. [11] Weber J S,Kudchadkar R R,Yu B,et al. Safety,efficacy,and biomarkers of nivolumab with vaccine in ipilimumab-refractory or-naive melanoma[J]. J Clin Oncol,2013,31(34):4311-4318. [12] Hamid O,Robert C,Daud A,et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma[J]. N Engl J Med,2013,369(2):134-144. [13] Balar A V, Weber J S. PD-1 and PD-L1 antibodies in cancer:current status and future directions[J]. Cancer Immunol Immunother,2017,66(5):551-564. [14] Nduom E K,Wei J,Yaghi N K,et al. PD-L1 expression and prognostic impact in glioblastoma[J]. Neuro Oncol,2016,18(2):195-205. [15] Omuro A,Vlahovic G,Lim M,et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma:results from exploratory phase I cohorts of CheckMate 143[J]. Neuro Oncol,2018,20(5):674-686. [16] Filley A C, Henriquez M. Recurrent glioma clinical trial,CheckMate-143_the game is not over yet[J]. Oncotarget,2017,8(53):91779-91794. [17] Lyon J G,Mokarram N,Saxena T,et al. Engineering challenges for brain tumor immunotherapy[J]. Adv Drug Deliv Rev,2017,114:19-32. [18] Dai H,Wang Y,Lu X,et al. Chimeric antigen receptors modified T-cells for cancer therapy[J]. J Natl Cancer Inst,2016,108(7):pii. [19] Grupp S A,Kalos M,Barrett D,et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. N Engl J Med,2013,368(16):1509-1518. [20] Schuster S J,Svoboda J,Chong E A,et al. Chimeric antigen receptor T cells in refractory B-Cell lymphomas[J]. N Engl J Med,2017,377(26):2545-2554. [21] Ali S A,Shi V,Maric I,et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma[J]. Blood,2016,128(13):1688-1700. [22] Dudley M E,Yang J C,Sherry R,et al. Adoptive cell therapy for patients with metastatic melanoma:evaluation of intensive myeloablative chemoradiation preparative regimens[J]. J Clin Oncol,2008,26(32):5233-5239. [23] Posey A D,Jr.,Schwab R D,Boesteanu A C,et al. Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane mucin MUC1 control adenocarcinoma[J]. Immunity,2016,44(6):1444-1454. [24] Heckler M, Dougan S K. Unmasking pancreatic cancer:epitope spreading after single antigen chimeric antigen receptor T-Cell therapy in a human phase I trial[J]. Gastroenterology,2018,155(1):11-14. [25] Wei X,Lai Y,Li J,et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells[J]. Oncoimmunology,2017,6(3):e1284722. [26] Brown C E,Badie B,Barish M E,et al. Bioactivity and safety of IL13 Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma[J]. Clin Cancer Res,2015,21(18):4062-4072. [27] Brown C E,Alizadeh D,Starr R,et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy[J]. N Engl J Med,2016,375(26):2561-2569. [28] O'Rourke D M,Nasrallah M P,Desai A,et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med,2017,9(399):pii. [29] Ahmed N,Brawley V,Hegde M,et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma:a phase 1 dose-escalation trial[J]. JAMA Oncol,2017,3(8):1094-1101. [30] Jin L,Ge H,Long Y,et al. CD70,a novel target of CAR T-cell therapy for gliomas[J]. Neuro Oncol,2018,20(1):55-65. [31] Mount C W,Majzner R G,Sundaresh S,et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas[J]. Nat Med,2018,24(5):572-579. [32] Chow K K,Naik S,Kakarla S,et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma[J]. Mol Ther,2013,21(3):629-637. [33] Wang F,Shang Z,Xu L,et al. Profiling and identification of chlorogenic acid metabolites in rats by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer[J]. Xenobiotica,2018,48(6):605-617. [34] Xue N,Zhou Q,Ji M,et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype[J]. Sci Rep,2017,7:39011. [35] Sitarek P,Skala E,Toma M,et al. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L[J]. Tumour Biol,2016,37(7):8753-8764. [36] Belkaid A,Currie J C,Desgagnes J,et al. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression[J]. Cancer Cell Int,2006,6:7. [37] Park J J,Hwang S J,Park J H,et al. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1alpha/AKT pathway[J]. Cell Oncol (Dordr),2015,38(2):111-118. [38] Ezzeddine Z D,Martuza R L,Platika D,et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene[J]. New Biol,1991,3(6):608-614. [39] van den Bossche W B L,Kleijn A,Teunissen C E,et al. Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment[J]. Neuro Oncol,2018,20(11):1494-1504. [40] Desjardins A,Gromeier M,Herndon J E,et al. Recurrent glioblastoma treated with recombinant poliovirus[J]. N Engl J Med,2018,379(2):150-161. [41] Idema S,Lamfers M L,van Beusechem V W,et al. AdDelta24 and the p53-expressing variant AdDelta24-p53 achieve potent anti-tumor activity in glioma when combined with radiotherapy[J]. J Gene Med,2007,9(12):1046-1056. |