首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (5): 853-859.doi: 10.3969/j.issn.1006-7795.2025.05.014

• 基础研究 • 上一篇    下一篇

融合去噪模块的心脏左心室影像分割研究

李格源1#,孟文楠2#,薛歆喆3,王宇4*,孙峥5   

  1. 1. 首都医科大学公共卫生学院卫生管理与政策学系,北京 100069; 2. 首都医科大学潞河临床医学院,北京 101149;3. 首都医科大学护理学院护理学系,北京 100069; 4. 首都医科大学生物医学工程学院智能医学工程学学系,北京 100069; 5. 首都医科大学宣武医院放射与核医学科, 北京 100053
  • 收稿日期:2024-12-12 修回日期:2025-09-18 出版日期:2025-10-21 发布日期:2025-10-22
  • 通讯作者: 王宇 E-mail:wangyuccmu@ccmu.edu.cn

Research on left ventricle image segmentation approach incorporating a denoising module

Li Geyuan1#, Meng Wennan2#, Xue Xinzhe3, Wang Yu4*, Sun Zheng5   

  1. 1.Department of Health Management and Policy, School of Public Health, Capital Medical University, Beijing 100069, China; 2. Luhe Clinical Medical College, Capital Medical University, Beijing 101149, China; 3. Department of Nursing, School of Nursing, Capital Medical University, Beijing 100069, China; 4. Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China; 5. Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • Received:2024-12-12 Revised:2025-09-18 Online:2025-10-21 Published:2025-10-22

摘要: 目的  针对医学影像噪声问题,提出融合去噪模块的左心室影像分割方法,旨在通过抑制噪声提升分割准确率。方法  去噪模块基于去噪扩散概率模型实现,分割模型包括运动估计与分割两个分支,修改去噪模块的预测目标为原始信号而非噪声,实现可导的去噪模块与分割模型级联训练过程。结果   在EchoNet-Dynamic数据库上,传统去噪分割性能不及基准模型,Noise2Noise模型在部分指标上有提升,融合去噪模块的分割方法在所有指标上均有提升。在ACDC数据库上,此方法优于基准模型,其余方法或不及基准模型,或差异无统计学意义。结论   传统去噪方法会损害分割性能,融合去噪模块的分割方法可稳定且有效地提升分割性能。实验验证了本研究的可行性和潜在临床应用价值。

关键词: 左心室分割, 去噪模型, 分割模型, 医学图像分割, 扩散概率模型, 级联训练

Abstract: Objective  To address the issue of noise in medical images, this paper proposes a left ventricular image segmentation method integrated with a denoising module to improve segmentation accuracy. Methods   The denoising module is based on a denoising diffusion probabilistic model, and the segmentation model includes two branches: motion estimation and segmentation. This paper modifies the prediction target of the denoising module to the original signal instead of noise, enabling the end-to-end cascade training process of the denoising module and the segmentation model. Results   On the EchoNet-Dynamic dataset, the segmentation performance of traditional denoising methods was inferior to the benchmark model; the Noise2Noise model showed improvement in three metrics, while our proposed method achieved improvement in all four metrics. On the ACDC dataset, our method outperformed the benchmark model, while other methods either performed worse than the benchmark or showed no statistical difference. Conclusion   Traditional denoising methods can impair segmentation performance, whereas our proposed method can stably and effectively improve segmentation performance. Experiments verify the feasibility and potential clinical application value of the proposed method.

Key words: left ventricular segmentation, denoising model, segmentation model, medical image segmentation, diffusion probabilistic model, cascade training

中图分类号: