[1] Fahn S. Description of Parkinson's disease as a clinical syndrome[J]. Ann N Y Acad Sci, 2003, 991(1): 1-14. [2] Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease[J]. J Neurochem, 2016, 139(suppl 1): 318-324. [3] Mirelman A, Bonato P, Camicioli R, et al. Gait impairments in Parkinson's disease[J]. Lancet Neurol, 2019, 18(7): 697-708. [4] Asakawa T, Fang H, Sugiyama K, et al. Animal behavioral assessments in current research of Parkinson's disease[J]. Neurosci Biobehav Rev, 2016, 65: 63-94. [5] Rosin R, Topka H, Dichgans J. Gait initiation in Parkinson's disease[J]. Mov Disord, 1997, 12(5): 682-690. [6] Papa E V, Addison O, Foreman K B, et al. Reproducibility and responsiveness of gait initiation in Parkinson's disease[J]. J Biomech, 2019, 87: 197-201. [7] Hoehn M M, Yahr M D. Parkinsonism: onset, progression and mortality[J]. Neurology, 1967, 17(5): 427-442. [8] Tecuapetla F, Jin X, Lima S Q, et al. Complementary contributions of striatal projection pathways to action initiation and execution[J]. Cell, 2016, 166(3): 703-715. [9] Nonomura S, Nishizawa K, Sakai Y, et al. Monitoring and updating of action selection for goal-directed behavior through the striatal direct and indirect pathways[J]. Neuron, 2018, 99(6): 1302-1314. [10] Sheng M J, Lu D, Shen Z M, et al. Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning[J]. Proc Nat Acad Sci USA, 2019, 116(22): 11038-11047. [11] Barbera G, Liang B, Zhang L, et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information[J]. Neuron, 2016, 92(1): 202-213. [12] Meng C, Zhou J, Papaneri A, et al. Spectrally resolved fiber photometry for multi-component analysis of brain circuits[J]. Neuron, 2018, 98(4): 707-717. [13] Parker J G, Marshall J D, Ahanonu B, et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states[J]. Nature, 2018, 557(7704): 177-182. [14] Thiele S L, Warre R, Nash J E. Development of a unilaterally-lesioned 6-OHDA mouse model of parkinson's disease[J]. J Vis Exp, 2012, 60:3234. [15] Fobbs W C, Bariselli S, Licholai J A, et al. Continuous representations of speed by striatal medium spiny neurons[J]. J Neurosci, 2020, 40(8): 1679-1688. [16] Manohar S G, Chong T T, Apps M A, et al. Reward pays the cost of noise reduction in motor and cognitive control[J]. Curr Biol, 2015, 25(13): 1707-1716. [17] Howe M, Ridouh I, Allegra Mascaro A L, et al. Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement[J]. ELife, 2019, 8:e44903. [18] Gritton H J, Howe W M, Romano M F, et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement[J]. Nat Neurosci, 2019, 22(4): 586-597. [19] da Silva J A, Tecuapetla F, Paixa~o V, et al. Dopamine neuron activity before action initiation gates and invigorates future movements[J]. Nature, 2018, 554(7691): 244-248. [20] Kravitz A V, Freeze B S, Parker P R L, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306): 622-626. [21] McIver E L, Atherton J F, Chu H, et al. Maladaptive downregulation of autonomous subthalamic nucleus activity following the loss of midbrain dopamine neurons[J]. Cell Rep, 2019, 28(4): 992-1002. [22] Mazzoni P, Hristova A, Krakauer J W. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation[J]. J Neurosci, 2007, 27(27): 7105-7116. |