Journal of Capital Medical University ›› 2022, Vol. 43 ›› Issue (5): 720-727.doi: 10.3969/j.issn.1006-7795.2022.05.009
• Clinical and Basic Research in Nephrology • Previous Articles Next Articles
Chen Xiaomei, Ma Yuanyuan, Nie Jing, Zhu Fengxin*
Received:
2022-05-09
Online:
2022-10-21
Published:
2022-10-25
Contact:
* E-mail:zhufengxin@126.com
Supported by:
CLC Number:
Chen Xiaomei, Ma Yuanyuan, Nie Jing, Zhu Fengxin. Progress on the injury and repair mechanism of renal tubular epithelial cells in the transition of acute kidney injury to chronic kidney disease[J]. Journal of Capital Medical University, 2022, 43(5): 720-727.
[1] Coca S G, Singanamala S, Parikh C R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis[J]. Kidney Int, 2012, 81(5): 442-448. [2] Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury[J]. Kidney Int, 2018, 93(1): 27-40. [3] Healy E, Dempsey M, Lally C, et al. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line[J]. Kidney Int, 1998, 54(6): 1955-1966. [4] Danial N N, Korsmeyer S J. Cell death: critical control points[J]. Cell, 2004,116(2):205-219. [5] Pefanis A, Ierino F L, Murphy J M, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int, 2019, 96(2): 291-301. [6] Linkermann A, Chen G C, Dong G E, et al. Regulated cell death in AKI[J]. J Am Soc Nephrol, 2014, 25(12): 2689-2701. [7] Galluzzi L, Kepp O, Chan F K M, et al. Necroptosis: mechanisms and relevance to disease[J]. Annu Rev Pathol, 2017, 12: 103-130. [8] Quarato G, Guy C S, Grace C R, et al. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis[J]. Mol Cell, 2016, 61(4): 589-601. [9] Priante G, Gianesello L, Ceol M, et al. Cell death in the kidney[J]. Int J Mol Sci, 2019, 20(14): 3598. [10] Linkermann A, Bräsen J H, Himmerkus N, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury[J]. Kidney Int, 2012, 81(8): 751-761. [11] Chen H, Fang Y L, Wu J F, et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD[J]. Cell Death Dis, 2018, 9(9): 878. [12] Popper B, Rammer M T, Gasparitsch M, et al. Neonatal obstructive nephropathy induces necroptosis and necroinflammation[J]. Sci Rep, 2019, 9(1): 18600. [13] Li Y, Xia W, Wu M, et al. Activation of GSDMD contributes to acute kidney injury induced by cisplatin[J]. Am J Physiol Renal Physiol, 2020,318(1):F96-F106. [14] Sollberger G, Strittmatter G E, Garstkiewicz M, et al. Caspase-1: the inflammasome and beyond[J]. Innate Immun, 2014,20(2):115-125. [15] Shi J J, Gao W Q, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. [16] Miao N J, Yin F, Xie H Y, et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int, 2019, 96(5): 1105-1120. [17] Vilaysane A, Chun J, Seamone M E, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD[J]. J Am Soc Nephrol, 2010, 21(10): 1732-1744. [18] Xia W W, Li Y Y, Wu M Y, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. [19] Wu M Y, Xia W W, Jin Q Q, et al. Gasdermin E deletion attenuates ureteral obstruction-and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction[J]. Front Cell Dev Biol, 2021, 9: 754134. [20] Stockwell B R, Angeli J P F, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. [21] Angeli J P F, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. [22] Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI[J]. J Am Soc Nephrol, 2017, 28(1): 218-229. [23] Yang L, Guo J, Yu N, et al. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model[J]. Life Sci, 2020, 261: 118487. [24] Scholz H, Boivin F J, Schmidt-Ott K M, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5): 335-349. [25] Cameron R B, Beeson C C, Schnellmann R G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases[J]. J Med Chem, 2016, 59(23): 10411-10434. [26] Kang H M, Ahn S H, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development[J]. Nat Med, 2015, 21(1): 37-46. [27] Tran M, Tam D, Bardia A, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice[J]. J Clin Invest, 2011, 121(10): 4003-4014. [28] Namwanje M, Bisunke B, Rousselle T V, et al. Rapamycin alternatively modifies mitochondrial dynamics in dendritic cells to reduce kidney ischemic reperfusion injury[J]. Int J Mol Sci, 2021, 22(10): 5386. [29] Jiménez-Uribe A P, Bellido B, Aparicio-Trejo O E, et al. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats[J]. Free Radic Biol Med, 2021, 172: 358-371. [30] Dhillon P, Park J, Del Pozo C H, et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation[J]. Cell Metab, 2021, 33(2): 379-394.e8. [31] Archer S L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases[J]. N Engl J Med, 2013, 369(23): 2236-2251. [32] Brooks C, Wei Q Q, Cho S G, et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models[J]. J Clin Invest, 2009, 119(5): 1275-1285. [33] Liu Z, Li H, Su J Q, et al. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury[J]. Antioxid Redox Signal, 2019, 30(15): 1797-1816. [34] Aparicio-Trejo O E, Avila-Rojas S H, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and beta-oxidation promotes experimental AKI-to-CKD transition induced by folic acid[J]. Free Radic Biol Med, 2020,154:18-32. [35] Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021,11(4):1845-1863. [36] Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021,15(1):1519-1538. [37] Chung K W, Dhillon P, Huang S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019,30(4):784-799. [38] Maekawa H, Inoue T, Ouchi H, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J]. Cell Rep, 2019, 29(5): 1261-1273.e6. [39] Chung K W, Dhillon P, Huang S Z, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019, 30(4): 784-799.e5. [40] Lee K, Gusella G L, He J C. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease[J]. Kidney Int, 2021, 100(1): 67-78. [41] DiRocco D P, Bisi J, Roberts P, et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury[J]. Am J Physiol Renal Physiol, 2014, 306(4): F379-F388. [42] Yang L, Besschetnova T Y, Brooks C R, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5): 535-543. [43] Zhu F X, Liu W, Li T, et al. Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M[J]. Oncotarget, 2016, 7(18): 25604-25619. [44] Zhu F X, Li H, Long T T, et al. Tubular numb promotes renal interstitial fibrosis via modulating HIF-1α protein stability[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(5): 166081. [45] Canaud G, Brooks C R, Kishi S, et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair[J]. Sci Transl Med, 2019, 11(476): eaav4754. [46] Liu Y H. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2): 212-222. [47] Iwano M, Plieth D, Danoff T M, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest, 2002, 110(3): 341-350. [48] Zeisberg E M, Potenta S E, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287. [49] LeBleu V S, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053. [50] Sheng L L, Zhuang S G. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis[J]. Front Physiol, 2020, 11: 569322. [51] Lovisa S, LeBleu V S, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis[J]. Nat Med, 2015, 21(9): 998-1009. [52] Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010,21(2):212-222. [53] Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis[J]. Trends Endocrinol Metab, 2016,27(10):681-695. [54] Pyo M C, Chae S A, Yoo H J, et al. Ochratoxin a induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo[J]. Arch Toxicol, 2020, 94(9): 3329-3342. [55] Huen S C, Cantley L G. Macrophages in renal injury and repair[J]. Annu Rev Physiol, 2017, 79: 449-469. [56] Meng X M, Nikolic-Paterson D J, Lan H Y. Inflammatory processes in renal fibrosis[J]. Nat Rev Nephrol, 2014, 10(9): 493-503. [57] Lv L L, Feng Y, Wen Y, et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation[J]. J Am Soc Nephrol, 2018, 29(3): 919-935. [58] Jiang W J, Xu C T, Du C L, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022, 12(1): 324-339. [59] Prunotto M, Budd D C, Gabbiani G, et al. Epithelial-mesenchymal crosstalk alteration in kidney fibrosis[J]. J Pathol, 2012, 228(2): 131-147. [60] Hong Q, Cai H, Zhang L, et al. Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich α-2 glycoprotein-1[J]. Kidney Int, 2022, 101(2): 299-314. [61] Lin L, Shi C W, Sun Z R, et al. The Ser/Thr kinase p90RSK promotes kidney fibrosis by modulating fibroblast-epithelial crosstalk[J]. J Biol Chem, 2019, 294(25): 9901-9910. [62] Zhou Y, Xiong M X, Niu J, et al. Secreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney[J]. J Cell Sci, 2014, 127(20): 4494-4506. |
[1] | Yu Tianyu, Jiang Shimin, Gao Hongmei, Zou Guming, Li Wenge. Clinical and pathological risk factors for renal prognosis in patients with biopsy-proven diabetic nephropathy classified as chronic kidney disease stage 4 [J]. Journal of Capital Medical University, 2022, 43(5): 707-712. |
[2] | Wu Jinming, Sun Haixia, Wang Jiayang, Qian Qing. Continuous risk prediction of acute kidney injury in elderly critically-ill patients based on electronic medical records [J]. Journal of Capital Medical University, 2022, 43(4): 600-609. |
[3] | Lai Xuan, Zhang Aihua. Effect of metabolic syndrome on survival outcome of chronic kidney disease [J]. Journal of Capital Medical University, 2021, 42(4): 609-614. |
[4] | Li Yang, Dong Ran, Rui Hongliang, Liu Taoshuai, Zheng Jubing, Xu Xiaoyu, Zhao Yang, Song Bangrong, Zhang Kui. Analyze of long-term prognosis of coronary artery bypass grafting in patients with coronary atherosclerotic and chronic kidney disease [J]. Journal of Capital Medical University, 2020, 41(4): 597-602. |
[5] | Yue Zhu, Li Ang, Liu Pei, Bai Jing, Zhuang Haizhou, Duan Meili. Acute kidney injury after liver transplantation: incidence and risk factors [J]. Journal of Capital Medical University, 2018, 39(1): 14-20. |
[6] | Yu Shujing, Liu Pei, Lin Jin, Liu Jingfeng, Ji Xiaojun, Liu Zhuang, Dong Lei, Duan Meili. Clinical study of renal function recovery in sepsis-related acute kidney injury patients [J]. Journal of Capital Medical University, 2018, 39(1): 21-27. |
[7] | Rong Guang, Hu Jiahui, Meng Qinggang, Xie Qingyu. Treat severe acute kidney failure with renal replacement therapy in early or late stages-a Meta analysis [J]. Journal of Capital Medical University, 2016, 37(2): 188-195. |
[8] | Wang Xiaoqi, Dai Wendi, Diao Zongli, Wang Liyan, Liu Wenhu. Retrospective analysis of influences of different protein intake on renal function in patients with stage 3 chronic kidney disease [J]. Journal of Capital Medical University, 2015, 36(6): 953-957. |
[9] | Luan Haixia, Yuan Hui, He Jianxun, Ma Xu, Yao Xingrong, Zeng Xiaoli, Gui Yuan, Liu Yulei. Value of urinary neutrophil gelatinase-associated lipocalin determined at different time points in early diagnosis of cardiac surgery-associated acute kidney injury [J]. Journal of Capital Medical University, 2015, 36(4): 592-596. |
[10] | Zhang Dongliang. Progress in anti-fibrosis treatment of chronic kidney disease [J]. Journal of Capital Medical University, 2015, 36(3): 333-337. |
[11] | JIANG Bo, JIANG Li, XI Xiuming. Biomarkers in predicting renal replacement therapy in acute septic kidney injury [J]. Journal of Capital Medical University, 2013, 34(2): 187-190. |
[12] | MENG Guang-rui;LI Chun-sheng. Predictive value of kidney injury molecule-1 testing for acute kidney injury in patients with sepsis [J]. Journal of Capital Medical University, 2012, 33(3): 394-398. |
[13] | Li Guogang;Liu Huilan;Xue Fei;Tan Yanguo. Changes in Plasma BNP and Its Correlation with Cardio Function in Patients with Predialysis Chronic Kidney Diseases [J]. Journal of Capital Medical University, 2008, 29(4): 497-500. |
[14] | Wang Qing;Sun Xiaoqin;Yang Ming . The Impact of Anemia and Chronic Kidney Disease on Hospitalized Patients with Congestive Heart Failure [J]. Journal of Capital Medical University, 2007, 28(5): 620-623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||