[1] Kubes P, Jenne C. Immune responses in the liver[J]. Annu Rev Immunol, 2018, 36: 247-277.
[2] Zheng M, Tian Z. Liver-mediated adaptive immune tolerance[J]. Front Immunol, 2019, 10: 2525.
[3] Zhang C Y, Yuan W G, He P, et al. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48): 10512-10522.
[4] Li C Y, Kong Y X, Wang H, et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis[J]. J Hepatol, 2009, 50(6): 1174-1183.
[5] Roehlen N, Crouchet E, Baumert T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875.
[6] Wynn T A, Vannella K M. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3): 450-462.
[7] Tacke F, Zimmermann H W. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096.
[8] Ramachandran P, Dobie R, Wilson-Kanamori J R, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level[J]. Nature, 2019, 575(7783): 512-518.
[9] Jaitin D A, Adlung L, Thaiss C A, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner[J]. Cell, 2019, 178(3): 686-698.e14.
[10] Fabre T, Barron A M S, Christensen S M, et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation[J]. Sci Immunol, 2023, 8(82): eadd8945.
[11] Yang Y, Li W, Liu C, et al. Single-cell RNA seq identifies Plg-RKT-PLG as signals inducing phenotypic transformation of scar-associated macrophage in liver fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(6): 166754.
[12] Daigneault M, Preston J A, Marriott H M, et al. The identi cation of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages[J]. PLoS One, 2010, 5(1):e8668.
[13] Remmerie A, Martens L, Thoné T, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver[J]. Immunity, 2020, 53(3): 641-657.e14.
[14] Guilliams M, Bonnardel J, Haest B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches[J]. Cell, 2022, 185(2): 379-396.
[15] Ding L L, De Munck T J I, Oligschlaeger Y, et al. Myosteatosis in NAFLD patients correlates with plasma cathepsin D[J]. Biomol Concepts, 2021, 12(1): 27-35.
[16] Han H, Ge X D, Komakula S S B, et al. Macrophage-derived osteopontin (SPP1) protects from nonalcoholic steatohepatitis[J]. Gastroenterology, 2023, 165(1): 201-217.
[17] Hendrikx T, Porsch F, Kiss M G, et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH[J]. J Hepatol, 2022, 77(5): 1373-1385.
[18] Zernecke A, Erhard F, Weinberger T, et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis[J]. Cardiovasc Res, 2023, 119(8): 1676-1689.
[19] Lee K J, An S, Kim M Y, et al. Hepatic TREM2+ macrophages express matrix metalloproteinases to control fibrotic scar formation[J]. Immunol Cell Biol, 2023, 101(3): 216-230.
[20] Cheng J, Wu H, Xie C, et al. Single-cell mapping of large and small arteries during hypertensive aging[J]. J Gerontol A Biol Sci Med Sci, 2024, 79(2): glad188.
[21] Lin E Y, Xi W, Aggarwal N, et al. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS)[J]. Int Immunol, 2023, 35(4): 171-180.[22] Dai W M, Guo Y C, Shen Z Y, et al. Identification of LBH and SPP1 involved in hepatic stellate cell activation during liver fibrogenesis[J]. Hum Cell, 2023, 36(3): 1054-1067.
[23] Liu J, Huang Y, Gong Y Y, et al. CTHRC1+ fibroblasts are stimulated by macrophage-secreted SPP1 to induce excessive collagen deposition in keloids[J]. Clin Transl Med, 2022, 12(12): e1115.
[24] Wang Z, Zhao Z, Xia Y, et al. Potential biomarkers in the fibrosis progression of nonalcoholic steatohepatitis (NASH)[J]. J Endocrinol Invest, 2022, 45(7): 1379-1392.
[25] Zhang R H, Wang M M, Lu H J, et al. A miR-340/SPP1 axis inhibits the activation and proliferation of hepatic stellate cells by inhibiting the TGF-β1/Smads pathway[J]. Adv Clin Exp Med, 2023, 32(4): 469-479.
[26] Tang M, Jia H Y, Chen S, et al. Significance of Mr/OPN/HMGB1 axis in NAFLD-associated hepatic fibrogenesis[J]. Life Sci, 2021, 264: 118619.
[27] Di Y Q, Han X L, Kang X L, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis[J]. Autophagy, 2021, 17(5): 1170-1192.
[28] Moles A, Tarrats N, Morales A, et al. Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis[J]. Am J Pathol, 2010, 177(3): 1214-1224.
[29] Dou S Q, Wang Q, Zhang B, et al. Publisher correction: single-cell atlas of keratoconus corneas revealed aberrant transcriptional signatures and implicated mechanical stretch as a trigger for keratoconus pathogenesis[J]. Cell Discov, 2022, 8(1): 79.
[30] Tao L L, Reese T A. Making mouse models that reflect human immune responses[J]. Trends Immunol, 2017, 38(3): 181-193.
[31] Han K H, Lim S, Ryu J, et al. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages[J]. Cardiovasc Res, 2009, 84(3): 378-386.
[32] Miles L A, Baik N, Lighvani S, et al. Deficiency of plasminogen receptor, Plg-RKT , causes defects in plasminogen binding and inflammatory macrophage recruitment in vivo[J]. J Thromb Haemost, 2017, 15(1): 155-162.
[33] Tsuchiya S, Yamabe M, Yamaguchi Y, et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1)[J]. Int J Cancer, 1980, 26(2): 171-176.
|