[1] Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications[J]. Mol Aspects Med, 2017, 55: 62-74.
[2] Babich V, Vadnagara K, Di Sole F. Adenosine A2A receptor blocks the a 1 receptor inhibition of renal Na+ transport and oxygen consumption[J]. J Cell Physiol, 2019, 234(8): 13917-13930.
[3] Roberts V S, Cowan P J, Alexander S I, et al. The role of adenosine receptors A2A and A2B signaling in renal fibrosis[J]. Kidney Int, 2014, 86(4): 685-692.
[4] Peleli M, Hezel M, Zollbrecht C, et al. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver[J]. Front Physiol, 2015, 6: 222.
[5] Layland J, Carrick D, Lee M, et al. Adenosine: physiology, pharmacology, and clinical applications[J]. JACC Cardiovasc Interv, 2014, 7(6): 581-591.
[6] Carlström M, Wilcox C S, Arendshorst W J. Renal autoregulation in health and disease[J]. Physiol Rev, 2015, 95(2): 405-511.
[7] Antonioli L, Blandizzi C, Csóka B, et al. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations[J]. Nat Rev Endocrinol, 2015, 11(4): 228-241.
[8] Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine[J]. Nat Rev Cancer, 2013, 13(12): 842-857.
[9] Cekic C, Linden J. Purinergic regulation of the immune system[J]. Nat Rev Immunol, 2016, 16(3): 177-192.
[10] Vallon V, Osswald H. Adenosine receptors and the kidney[J]. Handb Exp Pharmacol, 2009(193): 443-470.
[11] Rieg T, Vallon V. ATP and adenosine in the local regulation of water transport and homeostasis by the kidney[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(2): R419-R427.
[12] Ortiz-Capisano M C, Atchison D K, Harding P, et al. Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway[J]. Am J Physiol Renal Physiol, 2013, 305(8): F1209-F1219.
[13] Pandey S, Aggarwal D, Gupta K, et al. “Adenosine an old player with new possibilities in kidney diseases”: preclinical evidences and clinical perspectives[J]. Life Sci, 2021, 265: 118834.
[14] Olivera A, Lamas S, Rodriguez-Puyol D, et al. Adenosine induces mesangial cell contraction by an A1-type receptor[J]. Kidney Int, 1989, 35(6): 1300-1305.
[15] MacLaughlin M, Martinez-Salgado C, Eleno N, et al. Adenosine activates mesangial cell proliferation[J]. Cell Signal, 1997, 9(1): 59-63.
[16] Takeda M, Yoshitomi K, Imai M. Regulation of Na(+)-3HCO-3 cotransport in rabbit proximal convoluted tubule via adenosine A1 receptor[J]. Am J Physiol, 1993, 265(4 Pt 2): F511-F519.
[17] Edwards R M, Spielman W S. Adenosine a1 receptor-mediated inhibition of vasopressin action in inner medullary collecting duct[J]. Am J Physiol, 1994, 266(5 Pt 2): F791-F796.
[18] Shimizu M, Furuichi K, Wada T. Epidemiology and pathogenesis of diabetic nephropathy[J]. Nihon Jinzo Gakkai Shi, 2018, 59(2): 43-49.
[19] Meza Letelier C E, San Martín Ojeda C A, Ruiz Provoste J J, et al. Pathophysiology of diabetic nephropathy: a literature review[J]. Medwave, 2017, 17(1): e6839.
[20] Wolf G, Ziyadeh F N. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy[J]. Nephron Physiol, 2007, 106(2): p26-p31.
[21] Stitt-Cavanagh E, MacLeod L, Kennedy C. The podocyte in diabetic kidney disease[J]. Scientific World Journal, 2009, 9: 1127-1139.
[22] Faulhaber-Walter R, Jiang L P, Mizel D, et al. Podocyte density and albuminuria in aging diabetic Ins2± mice with or without adenosine a1 receptor signaling[J]. Int J Nephrol Renovasc Dis, 2020, 13: 19-26.
[23] Tesch G H. Diabetic nephropathy-is this an immune disorder?[J]. Clin Sci (Lond), 2017, 131(16): 2183-2199.
[24] Lim A K H, Tesch G H. Inflammation in diabetic nephropathy[J]. Mediators Inflamm, 2012, 2012: 146154.
[25] Tian D, Shi X, Zhao Y, et al. The effect of A1 adenosine receptor in diabetic megalin loss with caspase-1/IL18 signaling[J]. Diabetes Metab Syndr Obes, 2019, 12: 1583-1596.
[26] Rossier B C, Bochud M, Devuyst O. The hypertension pandemic: an evolutionary perspective[J]. Physiology (Bethesda), 2017, 32(2): 112-125.
[27] Nishiyama A, Inscho E W, Navar L G. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity[J]. Am J Physiol Renal Physiol, 2001, 280(3): F406-F414.
[28] Wierema T K A, Houben A J H M, Kroon A A, et al. Mechanisms of adenosine-induced renal vasodilatation in hypertensive patients[J]. J Hypertens, 2005, 23(9): 1731-1736.
[29] Aki Y, Nishiyama A, Miyatake A, et al. Role of adenosine A(1) receptor in angiotensin II- and norepinephrine-induced renal vasoconstriction[J]. J Pharmacol Exp Ther, 2002, 303(1): 117-123.
[30] Bauerle J D, Grenz A, Kim J H, et al. Adenosine generation and signaling during acute kidney injury[J]. J Am Soc Nephrol, 2011, 22(1): 14-20.
[31] Hoste E A, Schurgers M. Epidemiology of acute kidney injury: how big is the problem?[J]. Crit Care Med, 2008, 36(4 Suppl): S146-S151.
[32] Barrera-Chimal J, Pérez-Villalva R, Rodríguez-Romo R, et al. Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury[J]. Kidney Int, 2013, 83(1): 93-103.
[33] Awad A S, Rouse M, Huang L P, et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury[J]. Kidney Int, 2009, 75(7): 689-698.
[34] Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment[J]. J Renal Inj Prev, 2015, 4(2): 20-27.
[35] Lee H T, Gallos G, Nasr S H, et al. A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice[J]. J Am Soc Nephrol, 2004, 15(1): 102-111.
[36] Joo J D, Kim M, Horst P, et al. Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors[J]. Am J Physiol Renal Physiol, 2007, 293(6): F1847-F1857.
[37] Park S W, Kim M, Kim J Y, et al. Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia[J]. Kidney Int, 2012, 82(8): 878-891.
[38] Xiong B, Li M, Xiang S L, et al. A1AR-mediated renal protection against ischemia/reperfusion injury is dependent on HSP27 induction[J]. Int Urol Nephrol, 2018, 50(7): 1355-1363.
[39] Najafi H, Owji S M, Kamali-Sarvestani E, et al. A1 -adenosine receptor activation has biphasic roles in development of acute kidney injury at 4 and 24 h of reperfusion following ischaemia in rats[J]. Exp Physiol, 2016, 101(7): 913-931.
[40] Bhat S G, Mishra S, Mei Y, et al. Cisplatin up-regulates the adenosine A(1) receptor in the rat kidney[J]. Eur J Pharmacol, 2002, 442(3): 251-264.
[41] Gill A, Wortham K, Costa D, et al. Protective effect of tonapofylline (BG9928), an adenosine A1 receptor antagonist, against cisplatin-induced acute kidney injury in rats[J]. Am J Nephrol, 2009, 30(6): 521-526.
[42] Knight R J, Collis M G, Yates M S, et al. Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-1,3-dipropylxanthine[J]. Br J Pharmacol, 1991, 104(4): 1062-1068.
[43] Yao K, Kusaka H, Sato K, et al. Protective effects of KW-3902, a novel adenosine A1-receptor antagonist, against gentamicin-induced acute renal failure in rats[J]. Jpn J Pharmacol, 1994, 65(2): 167-170.
[44] Asif A, Epstein M. Prevention of radiocontrast-induced nephropathy[J]. Am J Kidney Dis, 2004, 44(1): 12-24.
[45] Lee H T, Jan M, Bae S C, et al. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo[J]. Am J Physiol Renal Physiol, 2006, 290(6): F1367-F1375.
|