[1] Zheng Y F, Swanson J, Koehnke J, et al. Sound localization of listeners with normal hearing, impaired hearing, hearing aids, bone-anchored hearing instruments, and cochlear implants: a review[J]. Am J Audiol, 2022, 31(3): 819-834.
[2] Akeroyd M A. The psychoacoustics of binaural hearing[J]. Int J Audiol, 2006, 45(suppl 1): S25-S33.
[3] 王蕴秀, 杨蓓蓓. 人工耳蜗植入患者双耳聆听的相关研究进展[J]. 中华耳科学杂志, 2019, 17(4): 583-588.
[4] Best V, Gallun F J, Mason C R, et al. The impact of noise and hearing loss on the processing of simultaneous sentences[J]. Ear Hear, 2010, 31(2): 213-220.
[5] Culling J F, Hawley M L, Litovsky R Y. The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources[J]. J Acoust Soc Am, 2004, 116(2): 1057-1065.
[6] Buz E, Dwyer N C, Lai W, et al. Integration of fundamental frequency and voice-onset-time to voicing categorization: listeners with normal hearing and bimodal hearing configurationsa[J]. J Acoust Soc Am, 2023, 153(3): 1580.
[7] Dorman M F, Loiselle L H, Cook S J, et al. Sound source localization by normal-hearing listeners, hearing-impaired listeners and cochlear implant listeners[J]. Audiol Neurootol, 2016, 21(3): 127-131.
[8] Kelsall D, Lupo J, Biever A. Longitudinal outcomes of cochlear implantation and bimodal hearing in a large group of adults: a multicenter clinical study[J]. Am J Otolaryngol, 2021, 42(1): 102773.
[9] Colby S, Orena A J. Recognizing voices through a cochlear implant: a systematic review of voice perception, talker discrimination, and talker identification[J]. J Speech Lang Hear Res, 2022, 65(8): 3165-3194.
[10] Li Y X, Zhang G P, Galvin J J, et al. Mandarin speech perception in combined electric and acoustic stimulation[J]. PLoS One, 2014, 9(11): e112471.
[11] Oh Y, Srinivasan N K, Hartling C L, et al. Differential effects of binaural pitch fusion range on the benefits of voice gender differences in a “cocktail party” environment for bimodal and bilateral cochlear implant users[J]. Ear Hear, 2023, 44(2): 318-329.
[12] Chen B, Zhang X Y, Chen J Y, et al. Tonal language experience facilitates the use of spatial cues for segregating competing speech in bimodal cochlear implant listeners[J]. JASA Express Lett, 2024, 4(3): 034401.
[13] Hu H, Dietz M, Williges B, et al. Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users[J]. J Acoust Soc Am, 2018, 143(4): 2128.
[14] Brown D K, Cameron S, Martin J S, et al. The North American listening in spatialized Noise-Sentences test (NA LiSN-S): normative data and test-retest reliability studies for adolescents and young adults[J]. J Am Acad Audiol, 2010, 21(10): 629-641.
[15] Willis S, Xu K, Thomas M, et al. Bilateral and bimodal cochlear implant listeners can segregate competing speech using talker sex cues, but not spatial cues[J]. JASA Express Lett, 2021, 1(1): 014401.
[16] Cullington H E, Zeng F G. Speech recognition with varying numbers and types of competing talkers by normal-hearing, cochlear-implant, and implant simulation subjects[J]. J Acoust Soc Am, 2008, 123(1): 450-461.
[17] Gifford R H, Loiselle L, Natale S, et al. Speech understanding in noise for adults with cochlear implants: effects of hearing configuration, source location certainty, and head movement[J]. J Speech Lang Hear Res, 2018, 61(5): 1306-1321.
[18] Fu Q J, Nogaki G. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing[J]. J Assoc Res Otolaryngol, 2005, 6(1): 19-27.
[19] Bronkhorst A W. The cocktail-party problem revisited: early processing and selection of multi-talker speech[J]. Atten Percept Psychophys, 2015, 77(5): 1465-1487.
[20] Brungart D S, Simpson B D, Ericson M A, et al. Informational and energetic masking effects in the perception of multiple simultaneous talkers[J]. J Acoust Soc Am, 2001, 110(5 Pt 1): 2527-2538.
[21] Jennings S G, Chen J. Masking of short tones in noise: evidence for envelope-based,rather than energy-based detection[J]. J Acoust Soc Am, 2020, 148(1): 32752781.
[22] Zhang J, Wang X, Wang N Y, et al. Tonal language speakers are better able to segregate competing speech according to talker sex differences[J]. J Speech Lang Hear Res, 2020, 63(8): 2801-2810.
[23] 亓贝尔, 古鑫, 刘子夜, 等. 汉语普通话人工耳蜗使用者对声调识别的分析研究[J]. 中国耳鼻咽喉头颈外科, 2017, 24(4): 175-179.
[24] 王硕, Mannell R, Newall P, 等. 共振峰信息在汉语声调感知中的作用[J]. 中国耳鼻咽喉头颈外科, 2012, 19(1): 8-11.
[25] Zhou Q, Bi J T, Song H H, et al. Mandarin lexical tone recognition in bimodal cochlear implant users[J]. Int J Audiol, 2020, 59(7): 548-555.
[26] Xie X, Myers E. The impact of musical training and tone language experience on talker identification[J]. J Acoust Soc Am, 2015, 137(1): 419-432.
[27] Fu Q J, Zeng F G, Shannon R V, et al. Importance of tonal envelope cues in Chinese speech recognition[J]. J Acoust Soc Am, 1998, 104(1): 505-510.
[28] Tao D D, Fu Q J, Galvin J J, et al. The development and validation of the Closed-set Mandarin Sentence (CMS) test[J]. Speech Commun, 2017, 92: 125-131.
[29] 魏兴梅, 拱月, 陈彪, 等. 双耳双模式助听患者汉语普通话声调识别特征[J]. 听力学及言语疾病杂志, 2017, 25(2): 180-185.
[30] Fu Q J, Chinchilla S, Galvin J J. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users[J]. J Assoc Res Otolaryngol, 2004, 5(3): 253-260.
[31] Fu Q. Temporal processing and speech recognition in cochlear implant users[J]. Neuroreport, 2002, 13(13): 1635-1639.
[32] Chen B, Shi Y, Zhang L F, et al. Masking effects in the perception of multiple simultaneous talkers in Normal-Hearing and cochlear implant listeners[J]. Trends Hear, 2020, 24: 2331216520916106.
[33] Kidd G J, Mason C R, Swaminathan J, et al. Determining the energetic and informational components of speech-on-speech masking[J]. J Acoust Soc Am, 2016, 140(1): 132.
[34] Leibold L J, Browning J M, Buss E. Masking release for Speech-in-Speech recognition due to a target/masker sex mismatch in children with hearing loss[J]. Ear Hear, 2020, 41(2): 259-267.
[35] Visram A S, Kluk K, McKay C M. Voice gender differences and separation of simultaneous talkers in cochlear implant users with residual hearing[J]. J Acoust Soc Am, 2012, 132(2): EL135-EL141.
[36] Fu Q J, Chinchilla S, Nogaki G, et al. Voice gender identification by cochlear implant users: the role of spectral and temporal resolution[J]. J Acoust Soc Am, 2005, 118(3 Pt 1): 1711-1718.
[37] Thomas M, Galvin J J, Fu Q J. Importance of ipsilateral residual hearing for spatial hearing by bimodal cochlear implant users[J]. Sci Rep, 2023, 13(1): 4960.
[38] Svirsky M A, Fitzgerald M B, Sagi E, et al. Bilateral cochlear implants with large asymmetries in electrode insertion depth: implications for the study of auditory plasticity[J]. Acta Otolaryngol, 2015, 135(4): 354-363.
[39] Angermeier J L, Hemmert W, Zirn S. Sound localization bias and error in bimodal listeners improve instantaneously when the device delay mismatch is reduced[J]. Trends Hear, 2021, 25: 23312165211016165.
[40] Zirn S, Angermeier J, Arndt S, et al. Reducing the device delay mismatch can improve sound localization in bimodal cochlear implant/hearing-aid users[J]. Trends Hear, 2019, 23: 2331216519843876.
[41] Yoon Y S, Shin Y R, Gho J S, et al. Bimodal benefit depends on the performance difference between a cochlear implant and a hearing aid[J]. Cochlear Implants Int, 2015, 16(3): 159-167.
[42] Visram A S, Azadpour M, Kluk K, et al. Beneficial acoustic speech cues for cochlear implant users with residual acoustic hearing[J]. J Acoust Soc Am, 2012, 131(5): 4042-4050.
[43] Zobel B H, Wagner A, Sanders L D, et al. Spatial release from informational masking declines with age: Evidence from a detection task in a virtual separation paradigm[J]. J Acoust Soc Am, 2019, 146(1): 548.
|