[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA: a cancer journal for clinicians, 2021, 71(3): 209-49. DOI:10.3322/caac.21660
[2] Heimbach J K, Kulik L M, Finn R S, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380.
[3] Liu X Y, Elbanan M G, Luna A, et al. Radiomics in abdominopelvic solid-organ oncologic imaging: current status[J]. AJR Am J Roentgenol, 2022, 219(6): 985-995.
[4] Liu X Y, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?[J]. Eur Radiol, 2021, 31(1): 244-255.
[5] Mao Y F, Wang J C, Zhu Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24.
[6] Wu M H, Tan H N, Gao F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811.
[7] Xu X, Zhang H L, Liu Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144.
[8] Feng S T, Jia Y M, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659.
[9] Chen M Y, Cao J S, Hu J H, et al. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 38-51.
[10] Kong C L, Zhao Z W, Chen W Y, et al. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE[J]. Eur Radiol, 2021, 31(10): 7500-7511.
[11] Zheng B H, Liu L Z, Zhang Z Z, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients[J]. BMC Cancer, 2018, 18(1): 1148.
[12] Segal E, Sirlin C B, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol, 2007, 25(6): 675-680.
[13] Peng J, Lu F Y, Huang J H, et al. Development and validation of a pyradiomics signature to predict initial treatment response and prognosis during transarterial chemoembolization in hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 853254.
[14] Feng Z C, Li H L, Liu Q Y, et al. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma[J]. Radiology, 2023, 307(1): e221291.
[15] Liao H T, Jiang H Y, Chen Y T, et al. Predicting genomic alterations of phosphatidylinositol-3 kinase signaling in hepatocellular carcinoma: a radiogenomics study based on next-generation sequencing and contrast-enhanced CT[J]. Ann Surg Oncol, 2022, 29(7): 4552-4564.
[16] Wang Y Q, Gao B, Xia C H, et al. Development of a novel tumor microenvironment-related radiogenomics model for prognosis prediction in hepatocellular carcinoma[J]. Quant Imaging Med Surg, 2023, 13(9): 5803-5814.
[17] Xia W, Chen Y, Zhang R, et al. Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study[J]. Phys Med Biol, 2018, 63(3): 035044.
[18] Khalili N, Kazerooni A F, Familiar A, et al. Radiomics for characterization of the glioma immune microenvironment[J]. NPJ Precis Oncol, 2023, 7(1): 59.
[19] Liu Q Y, Zhu W W, Song F L, et al. Radio-immunomics in hepatocellular carcinoma: unraveling the tumor immune microenvironment[J]. Meta-Radiology, 2024, 2(3): 100098.
[20] Cariani E, Pilli M, Zerbini A, et al. Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma[J]. PLoS One, 2012, 7(3): e32493.
[21] Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies[J]. Mol Cancer, 2017, 16(1): 149.
[22] Sun R, Limkin E J, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191.
[23] Palucka A K, Coussens L M. The basis of oncoimmunology[J]. Cell, 2016, 164(6): 1233-1247.
[24] Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the ‘immunoscore’ in the classification of malignant tumours[J]. J Pathol, 2014, 232(2): 199-209.
[25] Bruni D, Angell H K, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680.
[26] Gabrielson A, Wu Y N, Wang H K, et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC[J]. Cancer Immunol Res, 2016, 4(5): 419-430.
[27] Hectors S J, Wagner M, Bane O, et al. Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging[J]. Sci Rep, 2017, 7(1): 2452.
[28] Chen S L, Feng S T, Wei J W, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8): 4177-4187.
[29] Liao H T, Zhang Z, Chen J, et al. Preoperative radiomic approach to evaluate tumor-infiltrating CD8+ T cells in hepatocellular carcinoma patients using contrast-enhanced computed tomography[J]. Ann Surg Oncol, 2019, 26(13): 4537-4547.
[30] Sangro B, Chan S L, Meyer T, et al. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 320-341.
[31] Hectors S J, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769.
[32] Gong X Q, Liu N, Tao Y Y, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma[J]. Sci Rep, 2023, 13(1): 7710.
[33] Montalbano M, Rastellini C, McGuire J T, et al. Role of glypican-3 in the growth, migration and invasion of primary hepatocytes isolated from patients with hepatocellular carcinoma[J]. Cell Oncol, 2018, 41(2): 169-184.
[34] Chong H H, Gong Y D, Zhang Y F, et al. Radiomics on gadoxetate disodium-enhanced MRI: non-invasively identifying glypican 3-positive hepatocellular carcinoma and postoperative recurrence[J]. Acad Radiol, 2023, 30(1): 49-63.
[35] Liu P J, Li W Q, Qiu G B, et al. Multiparametric MRI combined with clinical factors to predict glypican-3 expression of hepatocellular carcinoma[J]. Front Oncol, 2023, 13: 1142916.
[36] Li Z J, Wang Y Y, Yu J H, et al. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma[J]. Sci Rep, 2017, 7(1): 5467.
[37] Gul S, Khan M S, Bibi A, et al. Deep learning techniques for liver and liver tumor segmentation: a review[J]. Comput Biol Med, 2022, 147: 105620.
[38] McBee M P, Awan O A, Colucci A T, et al. Deep learning in radiology[J]. Acad Radiol, 2018, 25(11): 1472-1480.
[39] Zheng X Y, Yao Z, Huang Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236.
[40] Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4): 729-741.
[41] Chen Y Y, Chen J, Zhang Y, et al. Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging[J]. J Hepatocell Carcinoma, 2021, 8: 795-808.
[42] He T C, Fong J N, Moore L W, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894.
[43] Ding Y, Ruan S J, Wang Y B Z, et al. Novel deep learning radiomics model for preoperative evaluation of hepatocellular carcinoma differentiation based on computed tomography data[J]. Clin Transl Med, 2021, 11(11): e570.
[44] Gao W Y, Wang W T, Song D J, et al. A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma[J]. Radiol Med, 2022, 127(3): 259-271.
[45] Peng J, Huang J H, Huang G J, et al. Predicting the initial treatment response to transarterial chemoembolization in intermediate-stage hepatocellular carcinoma by the integration of radiomics and deep learning[J]. Front Oncol, 2021, 11: 730282.
[46] Guo L X, Hao X, Chen L, et al. Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study[J]. EClinicalMedicine, 2024, 74: 102718.
[47] Pinker K, Chin J, Melsaether A N, et al. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment[J]. Radiology, 2018, 287(3): 732-747.
[48] Huang E P, O'Connor J P B, McShane L M, et al. Criteria for the translation of radiomics into clinically useful tests[J]. Nat Rev Clin Oncol, 2023, 20(2): 69-82.
[49] Liu Z Q, Duan T, Zhang Y Y, et al. Radiogenomics: a key component of precision cancer medicine[J]. Br J Cancer, 2023, 129(5): 741-753.
[50] Avanzo M, Wei L S, Stancanello J, et al. Machine and deep learning methods for radiomics[J]. Med Phys, 2020, 47(5): e185-e202.
[51] Li J A, Tian J Y, Liu Y C, et al. Personalized analysis of human cancer multi-omics for precision oncology[J]. Comput Struct Biotechnol J, 2024, 23: 2049-2056.
|