[1]Chapman H A. Disorders of lung matrix remodeling[J]. J Clin Invest, 2004, 113(2): 148-157.
[2]Phan T H G, Paliogiannis P, Nasrallah G K, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis[J]. Cell Mol Life Sci, 2021, 78(5): 2031-2057.
[3]Chambers R C, Mercer P F. Mechanisms of alveolar epithelial injury, repair, and fibrosis[J]. Ann Am Thorac Soc, 2015, 12(Suppl 1): S16-S20.
[4]Song L C, Li K, Chen H Y, et al. Cell cross-talk in alveolar microenvironment: from lung injury to fibrosis[J]. Am J Respir Cell Mol Biol, 2024, 71(1): 30-42.
[5]Henderson N C, Rieder F, Wynn T A. Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587(7835): 555-566.
[6]Pott H, Sykes D L, Charriot J, et al. Breathing barriers: bridging lung health, research, and awareness[J]. Lancet Respir Med, 2025, 13(8): 665-667.
[7]Spagnolo P, Guler S A, Chaudhuri N, et al. Global epidemiology and burden of interstitial lung disease[J]. Lancet Respir Med, 2025, 13(8): 739-755.
[8]Liu T J, De Los Santos F G, Phan S H. The bleomycin model of pulmonary fibrosis[J]. Methods Mol Biol, 2017, 1627: 27-42.
[9]El-Baz L M, Shoukry N M, Hafez H S, et al. Experimental mouse model of bleomycin-induced pulmonary fibrosis[J]. Int J Cancer Biomed Res, 2020, 4(3): 1-8.
[10]Burger R M, Peisach J, Horwitz S B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA[J]. J Biol Chem, 1981, 256(22): 11636-11644.
[11]Ayilya B L, Balde A, Ramya M, et al. Insights on the mechanism of bleomycin to induce lung injury and associated in vivo models: a review[J]. Int Immunopharmacol, 2023, 121: 110493.
[12]Teixeira K C, Soares F S, Rocha L G C, et al. Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine[J]. Pulm Pharmacol Ther, 2008, 21(2): 309-316.
[13]Liu X J, Chen Z H. The pathophysiological role of mitochondrial oxidative stress in lung diseases[J]. J Transl Med, 2017, 15(1): 207.
[14]Rogers L K, Cismowski M J. Oxidative stress in the lung-the essential paradox[J]. Curr Opin Toxicol, 2018, 7: 37-43.
[15]Della Latta V, Cecchettini A, Del Ry S, et al. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions[J]. Pharmacol Res, 2015, 97: 122-130.
[16]Cheresh P, Kim S J, Tulasiram S, et al. Oxidative stress and pulmonary fibrosis[J]. Biochim Biophys Acta, 2013, 1832(7): 1028-1040.
[17]Liu J T, Han X Y, Zhang T Y, et al. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy[J]. J Hematol Oncol, 2023, 16(1): 116.
[18]Wang Z W, Chen S Y, Guo W X, et al. Oxidative stress promotes intervertebral disc degeneration through NAT10-mediated IKKβ N4-acetylcytidine modification[J]. Cell Signal, 2025, 134: 111918.
[19]Qu Z Z, Pang X C, Mei Z T, et al. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury[J]. Redox Biol, 2024, 72: 103145.
[20]Wu S S, Yin L J, Han K, et al. NAT10 accelerates pulmonary fibrosis through N4-acetylated TGFB1-initiated epithelial-to-mesenchymal transition upon ambient fine particulate matter exposure[J]. Environ Pollut, 2023, 322: 121149.
[21]Spagnolo P, Kropski J A, Jones M G, et al. Idiopathic pulmonary fibrosis: disease mechanisms and drug development[J]. Pharmacol Ther, 2021, 222:107798.
[22]Otoupalova E, Smith S, Cheng G J, et al. Oxidative stress in pulmonary fibrosis[J]. Compr Physiol, 2020, 10(2): 509-547.
[23]Veith C, Boots A W, Idris M, et al. Redox imbalance in idiopathic pulmonary fibrosis: a role for oxidant cross-talk between NADPH oxidase enzymes and mitochondria[J]. Antioxid Redox Signal, 2019, 31(14): 1092-1115.
[24]Ranneh Y, Ali F, Akim A M, et al. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review[J]. Appl Biol Chem, 2017, 60(3): 327-338.
[25]Richter K, Konzack A, Pihlajaniemi T, et al. Redox-fibrosis: impact of TGFβ1 on ROS generators, mediators and functional consequences[J]. Redox Biol, 2015, 6: 344-352.
[26]Kinnula V L, Fattman C L, Tan R J, et al. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy[J]. Am J Respir Crit Care Med, 2005, 172(4): 417-422.
[27]Makena P, Kikalova T, Prasad G L, et al. Oxidative stress and lung fibrosis: towards an adverse outcome pathway[J]. Int J Mol Sci, 2023, 24(15): 12490. |