[1] Sensi S L, Paoletti P, Bush A I, et al. Zinc in the physiology and pathology of the CNS [J]. Nat Rev Neurosci, 2009, 10(11):780-791.[2] Bitanihirwe B K, Cunningham M G. Zinc: the brain’s dark horse [J]. Synapse, 2009, 63(11):1029-1049.[3] Ohana E, Segal D, Palty R, et al. A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells [J]. J Biol Chem, 2004, 279(6):4278-4284.[4] Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar N G, et al. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat [J]. Brain Res, 2008, 1200:89-98.[5] Lee S J, Koh J Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes [J]. Mol Brain, 2010, 3(1):30.[6] Sensi S L, Paoletti P, Koh J Y, et al. The neurophysiology and pathology of brain zinc [J]. J Neurosci, 2011, 31(45):16076-16085.[7] Sorensen J C, Mattsson B, Andreasen A, et al. Rapid disappearance of zinc positive terminals in focal brain ischemia[J]. Brain Res, 1989, 812(1-2):265-269.[8] Kitamura Y, Iida Y, Abe J, et al. In vivo measurement of presynaptic Zn2+ release during forebrain ischemia in rats [J]. Biol Pharm Bull, 2006, 29(4):821-823.[9] Lauritzen M, Dreier J P, Fabricius M, et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury [J]. J Cereb Blood Flow Metab, 2011, 31(1): 17-35.[10] Carter R E, Aiba I, Dietz R M, et al. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation [J]. J Cereb Blood Flow Metab, 2011, 31(4):1073-1084.[11] Shuttleworth C W, Weiss J H. Zinc: new clues to diverse roles in brain ischemia [J]. Trends Pharmacol Sci, 2011, 32(8):480-486.[12] Frederickson C J, Giblin L J, Krezel A, et al. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion [J]. Exp Neurol, 2006, 198(2):285-293.[13] Sensi S L, Ton-That D, Sullivan P G, et al. Modulation of mitochondrial function by endogenous Zn2+ pools [J]. Proc Natl Acad Sci U S A, 2003, 100(10):6157-6162.[14] Lee J Y, Kim J H, Palmiter R D, et al. Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury [J]. Exp Neurol, 2003, 184(1): 337-347.[15] Malaiyandi L M, Dineley K E, Reynolds I J. Divergent consequences arise from metallothionein overexpression in astrocytes: zinc buffering and oxidant-induced zinc release [J]. Glia, 2004, 45(4):346-353.[16] Koumura A, Hamanaka J, Shimazawa M, et al. Metallothionein-III knockout mice aggravates the neuronal damage after transient focal cerebral ischemia [J]. Brain Res, 2009, 1292:148-154.[17] Aras M A, Hara H, Hartnett K A, et al. Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning [J]. J Neurochem, 2009, 110(1):106-117.[18] Gazaryan I G, Krasinskaya I P, Kristal B S, et al. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition [J]. J Biol Chem, 2007, 282(33):24373-24380.[19] Galasso S L, Dyck R H. The role of zinc in cerebral ischemia [J]. Mol Med, 2007, 13(7-8):380-387.[20] Dineley K E, Richards L L, Votyakova T V, et al. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria [J]. Mitochondrion, 2005, 5(1): 55-65.[21] Bonanni L, Chachar M, Jover-Mengual T, et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain [J]. J Neurosci, 2006, 26(25): 6851-6862.[22] Medvedeva Y V, Lin B, Shuttleworth C W, et al. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia [J]. J Neurosci, 2009, 29(4):1105-1114.[23] Aimo L, Cherr G N, Oteiza P I,et al. Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation [J]. Free Radic Biol Med, 2010, 48(12):1577-1587.[24] Calderone A, Jover T, Noh K M, et al. Ischemic insults derepress the gene silencer REST in neurons destined to die [J]. J Neurosci, 2003, 23(6):2112-2121.[25] Lapucci A, Pittelli M, Rapizzi E, et al. Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription [J]. Mol Pharmacol, 2011, 79(6): 932-940.[26] Kim Y H, Koh J Y. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture[J]. Exp Neurol, 2002, 177(2), 407-418.[27] Yu S W, Andrabi S A, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death[J]. Proc Natl Acad Sci U S A, 2006, 103(48):18314-18319.[28] Andrabi S A, Kim N S, Yu S W, et al. Poly(ADP-ribose) (PAR) polymer is a death signal [J]. Proc Natl Acad Sci U S A, 2006, 103(48):18308-18313.[29] Lee J Y, Kim Y H, Koh J Y. Protection by pyruvate against transient forebrain ischemia in rats [J]. J Neurosci, 2001, 21(20):RC171.[30] Alano C C, Garnier P, Ying W, et al. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death [J]. J Neurosci, 2010, 30(8):2967-2978.[31] Sheline C T, Behrens M M, Choi D W. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis [J]. J Neurosci, 2000, 20(9):3139-3146.[32] Cai A L, Zipfel G J, Sheline C T. Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway [J]. Eur. J Neurosci, 2006, 24(8):2169-2176.[33] Suh S W, Aoyama K, Alano C C, et al. Zinc inhibits astrocyte glutamate uptake by activation of poly(ADP-ribose) polymerase-1 [J]. Mol Med, 2007, 13(7-8): 344-349.[34] Kauppinen T M, Higashi Y, Suh S W, et al. Zinc triggers microglial activation [J]. J Neurosci, 2008, 28(22):5827-5835.[35] Irving E A, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury [J]. J Cereb Blood Flow Metab, 2002, 22(6):631-647.[36] Redman P T, Hartnett K A, Aras M A, et al. Regulation of apoptotic potassium currents by coordinated zinc-dependent signaling [J]. J Physiol, 2009, 587(Pt 18):4393-4404.[37] Chu C T, Levinthal D J, Kulich S M, et al. Oxidative neuronal injury. The dark side of ERK1 /2 [J]. Eur J Biochem, 2004, 271(11): 2060-2066.[38] He K, Aizenman E. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity [J]. J Neurochem, 2010, 114(2): 452-461.[39] 李森, 闫峰, 闫颖, 等.大鼠局灶性脑缺血损伤后半暗带区锌离子的变化 [J]. 中国神经免疫学和神经病学杂志, 2012, 19(3): 175-178.[40] Lee S B, Bae I H, Bae Y S, et al. Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death [J]. J Biol Chem, 2006, 281(47): 36228-36235.[41] Jia Y, Jeng J M, Sensi S L, et al. Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurons [J]. J Physiol, 2002, 543(Pt1): 35-48.[42] Gower-Winter S D, Levenson C W. Zinc in the central nervous system: From molecules to behavior [J]. Biofactors, 2012, 38(3):186-193. |