[1] Evelyn Strauss. The 2017 LASKER AWARDS[EB/OL]. (2017-09-06). http://www.laskerfoundation.org/. [2] Laplante M, Sabatini D M. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2):274-293. [3] Liko D, Hall M N. mTOR in health and in sickness[J]. J Mol Med (Berl), 2015, 93(10):1061-1073. [4] Heitman J, Movva N R, Hall M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253(5022):905-909. [5] Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression[J]. Cell, 1993, 73(3):585-596. [6] Barbet N C, Schneider U, Helliwell S B, et al. TOR controls translation initiation and early G1 progression in yeast[J]. Mol Biol Cell, 1996, 7(1):25-42. [7] Beck T, Hall M N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors[J].Nature, 1999, 402(6762):689-692. [8] Hall M N. TOR and paradigm change:cell growth is controlled[J]. Mol Biol Cell, 2016, 27(18):2804-2806. [9] Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control[J]. Mol Cell, 2002, 10(3):457-468. [10] Gonzalez A, Hall M N. Nutrient sensing and TOR signaling in yeast and mammals[J]. EMBO J, 2017, 36(4):397-408. [11] Vaccarella S, Laversanne M, Ferlay J, et al. Cervical cancer in africa, latin America and the caribbean and asia:regional inequalities and changing trends[J]. Int J Cancer, 2017, 141(10):1997-2001. [12] Ciesielska U, Nowińska K, Podhorska-Okołów M, et al. The role of human papillomavirus in the malignant transformation of cervix epithelial cells and the importance of vaccination against this virus[J]. Adv Clin Exp Med, 2012, 21(2):235-244. [13] Kirnbauer R, Booy F, Cheng N, et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic[J]. Proc Natl Acad Sci U S A, 1992, 89(24):12180-12184. [14] Kirnbauer R, Taub J, Greenstone H, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles[J]. J Virol, 1993, 67(12):6929-6936. [15] Roden R B, Hubbert N L, Kirnbauer R, et al. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition[J]. J Virol, 1996, 70(5):3298-3301. [16] Harro C D, Pang Y Y, Roden R B, et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine[J]. J Natl Cancer Inst, 2001, 93(4):284-292. [17] Wu T, Hu Y M, Li J, et al. Immunogenicity and safety of an E. coli-produced bivalent human papillomavirus(type 16 and 18) vaccine:A randomized controlled phase 2 clinical trial[J]. Vaccine, 2015, 33(32):3940-3946. [18] Vesikari T, Brodszki N, van Damme P, et al. A randomized, rouble-blind, phase Ⅲ study of the immunogenicity and Safety of a 9-valent human papillomavirus L1 virus-like particle vaccine (V503) versus gardasil® in 9-15-Year-Old Girls[J]. Pediatr Infect Dis J, 2015, 34(9):992-998. [19] De Vincenzo R,Conte C,Ricci C,et al. Long-term efficacy and safety of human papillomavirus vaccination[J]. Int J Womens Health, 2014, 102(6):999-1010. [20] Crawford N W,Hodgson K, Gold M, et al. Adverse events following HPV immunization in australia:establishment of a clinical network[J]. Hum Vaccin Immunother, 2016, 12(10):2662-2665. [21] Petrosky E, Bocchini J A Jr, Hariri S, et al. Use of 9-valent human papillomavirus (HPV) vaccine:updated HPV vaccination recommendations of the advisory committee on immunization practices[J]. MMWR Morb Mortal Wkly Rep, 2015, 64(11):300-304.) |