首都医科大学学报 ›› 2023, Vol. 44 ›› Issue (2): 186-195.doi: 10.3969/j.issn.1006-7795.2023.02.002
王艺, 丁跃中, 许江南*
收稿日期:
2023-01-24
出版日期:
2023-04-21
发布日期:
2023-04-17
通讯作者:
许江南
E-mail:xujn@ccmu.edu.cn
基金资助:
Wang Yi, Ding Yuezhong, Xu Jiangnan*
Received:
2023-01-24
Online:
2023-04-21
Published:
2023-04-17
Supported by:
摘要:
中图分类号:
王艺, 丁跃中, 许江南. 滤泡辅助性T细胞及其在抗体介导的肺移植排斥反应中作用的研究进展[J]. 首都医科大学学报, 2023, 44(2): 186-195.
Wang Yi, Ding Yuezhong, Xu Jiangnan. Research progress of follicular helper T cells and their roles in antibody-mediated lung transplant rejection[J]. Journal of Capital Medical University, 2023, 44(2): 186-195.
[1]Chambers D C, Zuckermann A, Cherikh W S, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult lung transplantation report-2020; focus on deceased donor characteristics[J]. J Heart Lung Transplant, 2020, 39(10):1016-1027. [2]Sato M, Waddell T K, Wagnetz U, et al. (RAS):a novel form of chronic lung allograft dysfunction[J]. J Heart Lung Transplant, 2011, 30(7):735-742. [3]Crotty S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50(5):1132-1148. [4]Wallin E F. T follicular regulatory cells and antibody responses in transplantation[J]. Transplantation, 2018, 102(10):1614-1623. [5]Tahiliani V, Hutchinson T E, Abboud G, et al. OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection[J]. J Immunol, 2017, 198(1):218-228. [6]Mintz M A, Cyster J G. T follicular helper cells in germinal center B cell selection and lymphomagenesis[J]. Immunol Rev, 2020, 296(1):48-61. [7]OConnor M H, Muir R, Chakhtoura M, et al. A follicular regulatory innate lymphoid cell population impairs interactions between germinal center Tfh and B cells[J]. Commun Biol, 2021, 4(1):563. [8]Bocharnikov A V, Keegan J, Wacleche V S, et al. PD-1hiCXCR5-T peripheral helper cells promote B cell responses in lupus via MAF and IL-21[J]. JCI Insight, 2019, 4(20):e130062. [9]Ricard L, Jachiet V, Malard F, et al. Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib[J]. Ann Rheum Dis, 2019, 78(4):539-550. [10]Karnell J L, Ettinger R. The interplay of IL-21 and BAFF in the formation and maintenance of human B cell memory[J]. Front Immunol, 2012, 3: 2. [11]Vogelzang A, McGuire H M, Yu D, et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells[J]. Immunity, 2008, 29(1):127-137. [12]Terrier B, Costedoat-Chalumeau N, Garrido M, et al. Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus[J]. J Rheumatol, 2012, 39(9):1819-1828. [13]Schmitt N, Bentebibel S E, Ueno H. Phenotype and functions of memory Tfh cells in human blood[J]. Trends Immunol, 2014, 35(9):436-442. [14]Bentebibel S E, Lopez S, Obermoser G, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination[J]. Sci Transl Med, 2013, 5(176):176ra32. [15]Chung Y, Tanaka S, Chu F L, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions[J]. Nat Med, 2011, 17(8):983-988. [16]Wing J B, Ise W, Kurosaki T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4[J]. Immunity, 2014, 41(6):1013-1025. [17]Linterman M A, Pierson W, Lee S K, et al. Foxp3+ follicular regulatory T cells control the germinal center response[J]. Nat Med, 2011, 17(8):975-982. [18]Zhang Y, Garcia-Ibanez L, Toellner K M. Regulation of germinal center B-cell differentiation[J]. Immunol Rev, 2016, 270(1):8-19. [19]Sage P T, Alvarez D, Godec J, et al. Circulating T follicular regulatory and helper cells have memory-like properties[J]. J Clin Invest, 2014, 124(12):5191-5204. [20]Sage P T, Paterson A M, Lovitch S B, et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells[J]. Immunity, 2014, 41(6):1026-1039. [21]Demetris A J, Zeevi A, OLeary J G. ABO-compatible liver allograft antibody-mediated rejection: an update[J]. Curr Opin Organ Transplant, 2015, 20(3):314-324. [22]Abu-Elmagd K M, Wu G, Costa G, et al. Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver[J]. Am J Transplant, 2012, 12(11):3047-3060. [23]Hidalgo L G, Campbell P M, Sis B, et al. De novo donor-specific antibody at the time of kidney transplant biopsy associates with microvascular pathology and late graft failure[J]. Am J Transplant, 2009, 9(11):2532-2541. [24]Murata K, Baldwin W M 3rd. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection[J]. Transplant Rev (Orlando), 2009, 23(3):139-150. [25]Kuo H H, Morrell C N, Baldwin W M 3rd. Alloantibody induced platelet responses in transplants: potent mediators in small packages[J]. Hum Immunol, 2012, 73(12):1233-1238. [26]Wasowska B A. Mechanisms involved in antibody-and complement-mediated allograft rejection[J]. Immunol Res, 2010, 47(1-3):25-44. [27]Akiyoshi T, Hirohashi T, Alessandrini A, et al. Role of complement and NK cells in antibody mediated rejection[J]. Hum Immunol, 2012, 73(12):1226-1232. [28]Lederer S R, Kluth-Pepper B, Schneeberger H, et al. Impact of humoral alloreactivity early after transplantation on the long-term survival of renal allografts[J]. Kidney Int, 2001, 59(1):334-341. [29]Gaston R S, Cecka J M, Kasiske B L, et al. Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure[J]. Transplantation, 2010, 90(1):68-74. [30]Sadaka B, Alloway R R, Woodle E S. Management of antibody-mediated rejection in transplantation[J]. Surg Clin North Am, 2013, 93(6):1451-1466. [31]Walters G D, Vinuesa C G. T follicular helper cells in transplantation[J]. Transplantation, 2016, 100(8):1650-1655. [32]Conlon T M, Saeb-Parsy K, Cole J L, et al. Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells[J]. J Immunol, 2012, 188(6):2643-2652. [33]Verleden G M, Glanville A R, Lease E D, et al. Chronic lung allograft dysfunction:definition, diagnostic criteria, and approaches to treatment-a consensus report from the Pulmonary Council of the ISHLT[J]. J Heart Lung Transplant, 2019, 38(5):493-503. [34]Belloli E A, Wang X, Murray S, et al. Longitudinal forced vital capacity monitoring as a prognostic adjunct after lung transplantation[J]. Am J Respir Crit Care Med, 2015, 192(2):209-218. [35]Sato M, Hwang DM, Ohmori-Matsuda K, et al. Revisiting the pathologic finding of diffuse alveolar damage after lung transplantation[J]. J Heart Lung Transplant, 2012,31(4):354-63. [36]Misumi K, Wheeler D S, Aoki Y, et al. Humoral immune responses mediate the development of a restrictive phenotype of chronic lung allograft dysfunction[J]. JCI Insight, 2020, 5(23):e136533. [37]Verleden S E, Vanaudenaerde B M, Emonds M P, et al. Donor-specific and -nonspecific HLA antibodies and outcome post lung transplantation[J]. Eur Respir J, 2017, 50(5):1701248. [38]Roux A, Thomas K A, Sage E, et al. Donor-specific HLA antibody-mediated complement activation is a significant indicator of antibody-mediated rejection and poor long-term graft outcome during lung transplantation: a single center cohort study[J]. Transpl Int, 2018, 31(7):761-772. [39]Witt C A, Gaut J P, Yusen R D, et al. Acute antibody-mediated rejection after lung transplantation[J].J Heart Lung Transplant, 2013, 32(10):1034-1040. [40]Cano-Romero F L, Laguna Goya R, Utrero-Rico A, et al. Longitudinal profile of circulating T follicular helper lymphocytes parallels anti-HLA sensitization in renal transplant recipients[J]. Am J Transplant, 2019, 19(1):89-97. [41]Macedo C, Hadi K, Walters J, et al. Impact of induction therapy on circulating T follicular helper cells and subsequent donor-specific antibody formation after kidney transplant[J]. Kidney Int Rep, 2019, 4(3):455-469. [42]Chen C C, Koenig A, Saison C, et al. CD4+ T cell help is mandatory for naive and memorydonor-specific antibody responses: impact of therapeutic immunosuppression[J]. Front Immunol, 2018, 9: 275. [43]Danger R, Chesneau M, Delbos F, et al. CXCR5+PD1+ICOS+ circulating T follicular helpers are associated with de novo donor-specific antibodies after renal transplantation[J]. Front Immunol, 2019, 10: 2071. [44]Wing J B, Lim E L, Sakaguchi S. Control of foreign Ag-specific Ab responses by Treg and Tfr[J]. Immunol Rev, 2020, 296(1):104-119. [45]Lee F, Luevano M, Veys P, et al. The effects of CAMPATH-1H on cell viability do not correlate to the CD52 density on the cell surface[J]. PLoS One, 2014,9(7):e103254. [46]Todeschini M, Cortinovis M, Perico N, et al. In kidney transplant patients, alemtuzumab but not basiliximab/low-dose rabbit anti-thymocyte globulin induces B cell depletion and regeneration, which associates with a high incidence of de novo donor-specific anti-HLA antibody development[J]. J Immunol, 2013, 191(5):2818-2828. [47]Noureldeen T, Albekioni Z, Machado L, et al. Alemtuzumab induction and antibody-mediated rejection in kidney transplantation[J]. Transplant Proc, 2014, 46(10):3405-3407. [48]Kwun J, Park J, Yi J S, et al. IL-21 biased alemtuzumab induced chronicantibody-mediated rejection is reversed by LFA-1 costimulation blockade[J]. Front Immunol, 2018, 9: 2323. [49]Wiebe C, Rush D N, Nevins T E, et al. ClassⅡ eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development[J]. J Am Soc Nephrol, 2017, 28(11):3353-3362. [50]Tang T Q, Xu T, Liu X D, et al. Roles of BATF/JUN/IRF4 complex in tacrolimus mediated immunosuppression on Tfh cells in acute rejection after liver transplantation[J]. J Cell Physiol, 2021, 236(3):1776-1786. [51]Kahan B D, Chang J Y, Sehgal S N. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin[J]. Transplantation, 1991, 52(2):185-191. [52]Ye L I, Lee J, Xu L F, et al. mTOR promotes antiviral humoral immunity by differentially regulating CD4 helper T cell and B cell responses[J]. J Virol, 2017, 91(4):e01653-16. [53]Kraaijeveld R, Li Y, Yan L, et al. Inhibition of T helper cell differentiation by tacrolimus or sirolimus results in reduced B-cell activation: effects on T follicular helper cells[J]. Transplant Proc, 2019, 51(10):3463-3473. [54]Sage P T, Ron-Harel N, Juneja V R, et al. Suppression by TFR cells leads to durable and selective inhibition of B cell effector function[J]. Nat Immunol, 2016, 17(12):1436-1446. [55]Fantus D, Dai H L, Ono Y, et al. Influence of the novel ATP-competitive dual mTORC1/2 inhibitor AZD2014 on immune cell populations and heart allograft rejection[J]. Transplantation, 2017, 101(12):2830-2840. [56]Karnell J L,Karnell F G 3rd, Stephens G L, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation[J]. J Immunol, 2011, 187(7):3603-3612. [57]Heidt S, Roelen D L, Eijsink C, et al. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help[J]. Clin Exp Immunol, 2010, 159(2):199-207. [58]Terasaki P I, Ozawa M. Predicting kidney graft failure by HLA antibodies: a prospective trial[J]. Am J Transplant, 2004, 4(3):438-443. [59]Hourmant M, Cesbron-Gautier A, Terasaki P I, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation[J]. J Am Soc Nephrol, 2005, 16(9):2804-2812. [60]Van Laethem F, Baus E, Smyth L A, et al. Glucocorticoids attenuate T cell receptor signaling[J]. J Exp Med, 2001, 193(7):803-814. [61]Lwenberg M, Tuynman J, Bilderbeek J, et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn[J]. Blood, 2005, 106(5):1703-1710. [62]Akiyama M, Yasuoka H, Yamaoka K, et al. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease[J]. Arthritis Res Ther, 2016, 18: 167. [63]Bertrand D, Gatault P, Jauréguy M, et al. Protocol biopsies in patients with subclinicalde novo donor-specific antibodies after kidney transplantation: a multicentric study[J]. Transplantation, 2020, 104(8):1726-1737. [64]Kim E J, Kwun J, Gibby A C, et al. Costimulation blockade alters germinal centerresponses and prevents antibody-mediated rejection[J]. Am J Transplant, 2014, 14(1):59-69. [65]Chen J, Yin H, Xu J, et al. Reversing endogenous alloreactive B cell GC responses with anti-CD154 or CTLA-4Ig[J]. Am J Transplant, 2013, 13(9):2280-2292. [66]Young J S, Chen J, Miller M L, et al. Delayed cytotoxic tlymphocyte-associated protein 4-immunoglobulin treatment reverses ongoing alloantibody responses and rescues allografts from acute rejection[J]. Am J Transplant, 2016, 16(8):2312-2323. [67]Leibler C, Thiolat A, Hénique C, et al. Control of humoral response in renal transplantation by belatacept depends on a direct effect on B cells and impaired T follicularhelper-B cell crosstalk[J]. J Am Soc Nephrol, 2018, 29(3):1049-1062. [68]Leibler C, Thiolat A, Elsner R A, et al. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives[J]. Kidney Int, 2019, 95(4):774-786. [69]Vincenti F, Rostaing L, Grinyo J, et al. Belatacept andlong-term outcomes in kidney transplantation[J]. N Engl J Med, 2016, 374(4):333-343. [70]Leibler C, Matignon M, Moktefi A, et al. Belatacept in renal transplant recipient with mild immunologic risk factor: a pilot prospective study (BELACOR)[J]. Am J Transplant, 2019, 19(3):894-906. [71]Ville S, Poirier N, Branchereau J, et al. Anti-CD28 antibody and belatacept exert differential effects on mechanisms of renal allograft rejection[J]. J Am Soc Nephrol, 2016, 27(12):3577-3588. [72]La Muraglia G M 2nd, Zeng S S, Crichton E S, et al. Superior inhibition of alloantibody responses with selective CD28 blockade is CTLA-4 dependent and T follicular helper cell specific[J]. Am J Transplant, 2021, 21(1):73-86. [73]Pinelli D F, Ford M L. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance[J]. Immunotherapy, 2015, 7(4):399-410. [74]Kawai T, Andrews D, Colvin R B, et al. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand[J]. Nat Med, 2000, 6(2):114. [75]Okimura K, Maeta K, Kobayashi N, et al. Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects[J]. Am J Transplant, 2014, 14(6):1290-1299. [76]Watanabe M, Yamashita K, Suzuki T, et al. ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates[J]. Am J Transplant, 2013, 13(8):1976-1988. [77]Harland R C, Klintmalm G, Jensik S, et al. Efficacy and safety of bleselumab in kidney transplant recipients:a phase 2, randomized, open-label, noninferiority study[J]. Am J Transplant, 2020, 20(1):159-171. [78]Vincenti F, Klintmalm G, Yang H, et al. A randomized, phase 1b study of the pharmacokinetics, pharmacodynamics, safety, and tolerability of bleselumab, a fully human, anti-CD40 monoclonal antibody, in kidney transplantation[J]. Am J Transplant, 2020, 20(1):172-180. |
[1] | 陈彦, 张须龙, 许江南, 贾玉峰, 孙英. 现代免疫学在感染性疾病、过敏性疾病、肿瘤和神经系统疾病中的研究进展[J]. 首都医科大学学报, 2023, 44(2): 179-185. |
[2] | 张寒晓, 段荦, 张牧之, 张若旸, 赵刘一诺, 周若男, 李运淇, 吕喆, 王晶晶, 袁慧慧, 崔烨, 孙英, 王炜. 短期慢性阻塞性肺疾病模型的免疫特点[J]. 首都医科大学学报, 2023, 44(2): 203-211. |
[3] | 彭丹, 庞洁, 史一凡, 崔乐乐, 徐英杰, 李艳崔, 烨陈彦, 袁慧慧, 秦啸峰, 吕喆, 王炜, 孙英. 小鼠出生早期肺炎链球菌感染对成年期相同细菌性抗原诱导的哮喘严重程度的影响[J]. 首都医科大学学报, 2023, 44(2): 212-220. |
[4] | 黎紫怡, 王玺, 梁璞. 雌激素调控固有免疫细胞功能的研究进展[J]. 首都医科大学学报, 2023, 44(2): 351-357. |
[5] | 白若靖, 吕诗韵, 画伟, 吴昊, 代丽丽. LILRB2过表达慢病毒载体以及THP-1-LILRB2稳转细胞株的构建[J]. 首都医科大学学报, 2023, 44(1): 93-98. |
[6] | 李默, 韩德强, 赵宇, 陈志国. 使细胞治疗成为攻克疾病的新一代技术手段——陈志国教授[J]. 首都医科大学学报, 2020, 41(5): 778-782. |
[7] | 陈荣卷, 陈其瑞, 许江南, 丁跃中. 阻断CD40-CD40L信号通路对小鼠肺移植术后闭塞性细支气管炎的影响[J]. 首都医科大学学报, 2018, 39(2): 258-264. |
[8] | 陈晨, 孟艳. 血管紧张素Ⅱ对树突状细胞功能的影响[J]. 首都医科大学学报, 2017, 38(5): 709-714. |
[9] | 张悦, 李蕴, 朱进霞, 赵文明. 多巴胺受体在大鼠结肠黏膜下神经丛的表达和细胞分布[J]. 首都医科大学学报, 2017, 38(3): 411-416. |
[10] | 袁琳洁, 陈诗皓, 安高, 黄琼, 易达委, 李艳, 吕喆, 王晶晶, 黄克武, 王炜, 孙英. IL-33诱导的小鼠过敏原非依赖性哮喘样模型肺组织免疫细胞及亚群的改变[J]. 首都医科大学学报, 2016, 37(5): 561-567. |
[11] | 黄爱华, 张萍萍, 张斌, 马步青, 关云谦, 周逸丹. 复制性衰老减弱人胚骨髓间充质干细胞静脉移植治疗大鼠脑梗死的疗效[J]. 首都医科大学学报, 2015, 36(6): 865-874. |
[12] | 赵春松, 邹海强, 闫晓明, 陈凌, 王佳茵, 关云谦, 张愚. Bmi-1基因对人类胚胎纹状体来源神经干细胞凋亡的影响[J]. 首都医科大学学报, 2015, 36(1): 103-110. |
[13] | 冯雪婷, 张晨光, 张敏, 岳志霞, 邢天禹, 李慎涛, 丁卫. HaloTag技术在α-突触核蛋白质的细胞影像与定量分析中的应用[J]. 首都医科大学学报, 2014, 35(3): 324-330. |
[14] | 王敏, 杨军, 尚军, 张罗. 肿瘤坏死因子α诱导蛋白2在过敏性鼻炎小鼠模型中的表达及与血管生成的关系[J]. 首都医科大学学报, 2013, 34(6): 790-794. |
[15] | 李晓波, 顾建娟, 赵春松, 王淑艳, 关云谦, 陈凌, 张愚. 慢病毒载体介导的人磷脂磷酸水解酶3基因在人脐带间充质干细胞中的表达[J]. 首都医科大学学报, 2013, 34(6): 872-878. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||