[1]Wu X, Yao D D, Bao L L, et al. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement[J]. Immunol Cell Biol, 2020, 98(7):595-606.
[2]Wu X, Bao L L, Hu Z Q, et al. Ficolin A exacerbates severe H1N1 influenza virus infection-induced acute lung immunopathological injury via excessive complement activation[J]. Cell Mol Immunol, 2021, 18(9):2278-2280.
[3]Ren X W, Wen W, Fan X Y, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas[J]. Cell, 2021, 184(7):1895-1913.e19.
[4]Liao M F, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26(6):842-844.
[5]Melms J C, Biermann J, Huang H C, et al. A molecular single-cell lung atlas of lethal COVID-19[J]. Nature, 2021, 595(7865):114-119.
[6]Wang L, Wen M Y, Cao X T. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses[J]. Science, 2019, 365(6454):eaav0758.
[7]Solis A G, Bielecki P, Steach H R, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity [J]. Nature, 2019, 573(7772):69-74.
[8]Xu X L, Han M F, Li T T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117(20):10970-10975.
[9]Liu B, Bao L L, Wang L, et al. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice[J]. J Microbiol Immunol Infect, 2021, 54(3):396-403.
[10]Liu S, Li H, Wang Y M, et al. High expression of IL-36γ in influenza patients regulates interferon signaling pathway and causes programmed cell death during influenza virus infection[J]. Front Immunol, 2020, 11:552606.
[11]Xue C X, Wen M J, Bao L L, et al. Vγ4+γδT cells aggravate severe H1N1 influenza virus infection-induced acute pulmonary immunopathological injury via secreting interleukin-17A[J]. Front Immunol, 2017, 8:1054.
[12]Zhou Z W, He H B, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494):eaaz7548.
[13]Yao D D, Bao L L, Li F D, et al. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage[J]. Virulence, 2022, 13(1):1558-1572.
[14]Van De Veerdonk F L, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19[J]. Nat Med, 2022, 28(1):39-50.
[15]Sánchez-Borges M, Martin B L, Muraro A M, et al. The importance of allergic disease in public health: an iCAALL statement[J]. World Allergy Organ J, 2018, 11(1):8.
[16]Loftus P A, Wise S K. Epidemiology of asthma[J]. Curr Opin Otolaryngol Head Neck Surg, 2016, 24(3):245-249.
[17]Huang K W, Yang T, Xu J Y, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196):407-418.
[18]Cheng L, Chen J J, Fu Q L, et al. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2018, 10(4):300-353.
[19]Goksr E, Loid P, Alm B, et al. The allergic march comprises the coexistence of related patterns of allergic disease not just the progressive development of one disease[J]. Acta Paediatr, 2016, 105(12):1472-1479.
[20]Murrison L B, Brandt E B, Myers J B, et al. Environmental exposures and mechanisms in allergy and asthma development[J]. J Clin Invest, 2019, 129(4):1504-1515.
[21]Rutkowski K, Sowa P, Rutkowska-Talipska J, et al. Allergic diseases: the price of civilisational progress[J]. Postepy Dermatol Alergol, 2014, 31(2):77-83.
[22]Agache I, Akdis C A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases[J]. J Clin Invest, 2019, 129(4):1493-1503.
[23]Li Y, Chen S H, Chi Y F, et al. Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16[J]. Cell Mol Immunol, 2019, 16(1):75-86.
[24]Gasser P, Eggel A. Targeting IgE in allergic disease[J]. Curr Opin Immunol, 2018, 54: 86-92.
[25]Pitlick M M, Pongdee T. Combining biologics targeting eosinophils (IL-5/IL-5R), IgE, and IL-4/IL-13 in allergic and inflammatory diseases[J]. World Allergy Organ J, 2022, 15(11):100707.
[26]Shankar A, McAlees J W, Lewkowich I P. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease[J]. J Allergy Clin Immunol, 2022, 150(2):266-276.
[27]Parnes J R, Molfino N A, Colice G, et al. Targeting TSLP in asthma[J]. J Asthma Allergy, 2022, 15: 749-765.
[28]Ahmadzadeh M, Johnson L A, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired[J]. Blood, 2009, 114(8):1537-1544.
[29]Goronzy J J, Weyand C M. Mechanisms underlying T cell ageing[J]. Nat Rev Immunol, 2019, 19(9):573-583.
[30]Wherry E J. T cell exhaustion[J]. Nat Immunol, 2011, 12(6):492-499.
[31]Miller B C, Sen D R, Al Abosy R, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade[J]. Nat Immunol, 2019, 20(3):326-336.
[32]Chihara N, Madi A, Kondo T, et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells[J]. Nature, 2018, 558(7710):454-459.
[33]Wu T Q, Ji Y, Moseman E A, et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness[J]. Sci Immunol, 2016, 1(6):eaai8593.
[34]Teijeira A, Garasa S, Etxeberria I, et al. Metabolic consequences of T-cell costimulation in anticancer immunity[J]. Cancer Immunol Res, 2019, 7(10):1564-1569.
[35]Zappasodi R, Serganova I, Cohen I J, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours[J]. Nature, 2021, 591(7851):652-658.
[36]Watson M J, Vignali P D A, Mullett S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021, 591(7851):645-651.
[37]Luoma A M, Suo S B, Williams H L, et al. Molecular pathways of colon inflammation induced by cancer immunotherapy[J]. Cell, 2020, 182(3):655-671.e22.
[38]Bagchi S, Yuan R, Engleman E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249.
[39]Bailey C M, Liu Y, Liu M Y, et al. Targeting HIF-1α abrogates PD-L1-mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues[J]. J Clin Invest, 2022, 132(9):e150846.
[40]Shi K B, Li H D, Chang T, et al. Bone marrow hematopoiesis drives multiple sclerosis progression[J]. Cell, 2022, 185(13):2234-2247.e17.
[41]Tian D C, Zhang C Y, Yuan M, et al. Incidence of multiple sclerosis in China: a nationwide hospital-based study[J]. Lancet Reg Health West Pac, 2020, 1: 100010.
[42]Cavallo S. Immune-mediated genesis of multiple sclerosis[J]. J Transl Autoimmun, 2020, 3:100039.
[43]Liu J W, Liu L, Kang W T, et al. Cytokines/chemokines: potential biomarkers for non-paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis[J]. Front Neurol, 2020, 11:582296.
[44]Han B, Jiang W, Cui P, et al. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation[J]. Genome Med, 2021, 13(1):47.
[45]Li J J, Zhao X Q, Meng X, et al. High-sensitive C-reactive protein predicts recurrent stroke and poor functional outcome: subanalysis of the clopidogrel in high-risk patients with acute nondisabling cerebrovascular events trial[J]. Stroke, 2016, 47(8):2025-2030.
[46]Meier-Stephenson F S, Meier-Stephenson V C, Carter M D, et al. Alzheimers disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites[J]. Alzheimers Dement (N Y), 2022, 8(1):e12283.
[47]Pirooznia S K, Rosenthal L S, Dawson V L, et al. Parkinson disease: translating insights from molecular mechanisms to neuroprotection[J]. Pharmacol Rev, 2021, 73(4):33-97.
[48]Gordon R, Albornoz E A, Christie D C, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465):eaah4066.
[49]Panicker N, Kam T I, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinsons disease[J]. Neuron, 2022, 110(15):2422-2437.e9.
[50]Walther A, Mackens-Kiani A, Eder J, et al. Depressive disorders are associated with increased peripheral blood cell deformability: a cross-sectional case-control study (Mood-Morph)[J]. Transl Psychiatry, 2022, 12(1):150.
[51]Li Y, Jia Y F, Wang D D, et al. Programmed cell death 4 as an endogenous suppressor of BDNF translation is involved in stress-induced depression[J]. Mol Psychiatry, 2021, 26(6):2316-2333.
[52]Drevets W C, Wittenberg G M, Bullmore E T, et al. Immune targets for therapeutic development in depression: towards precision medicine[J]. Nat Rev Drug Discov, 2022, 21(3):224-244.
|