首都医科大学学报 ›› 2024, Vol. 45 ›› Issue (3): 379-384.doi: 10.3969/j.issn.1006-7795.2024.03.002
赵绍智,曹勇*
收稿日期:2024-04-25
出版日期:2024-06-21
通讯作者:
曹勇
E-mail:caoyong@bjtth.org
Zhao Shaozhi, Cao Yong*
Received:2024-04-25
Online:2024-06-21
摘要: 脑血管畸形 (cerebral vascular malformations, CVMs) 是指脑血管在胚胎时期因各种内、外界因素的影响,导致基因、细胞因子和蛋白等发生改变而引起的脑局部血管数量和结构的非肿瘤性发育异常所导致的疾病。血管内皮细胞基因突变作为关键始动因素之一,在CVMs的发生发展中起到了重要作用。了解CVMs中存在的内皮细胞突变对于预防其发生发展,开发靶向药物及指导临床治疗具有重要意义。本文将针对血管内皮细胞体细胞突变在CVMs中的发现、临床相关性及潜在的治疗意义进行综述。
中图分类号:
赵绍智, 曹勇. 血管内皮细胞体细胞突变与脑血管畸形[J]. 首都医科大学学报, 2024, 45(3): 379-384.
Zhao Shaozhi, Cao Yong. Somatic mutations in endothelial cells and cerebral vascular malformations[J]. Journal of Capital Medical University, 2024, 45(3): 379-384.
| [1]Toulgoat F, Lasjaunias P. Vascular malformations of the brain[J]. Handb Clin Neurol, 2013, 112: 1043-1051. [2]Zafar A, Fiani B, Hadi H, et al. Cerebral vascular malformations and their imaging modalities[J]. Neurol Sci, 2020, 41(9):2407-2421. [3]Brown R D Jr, Flemming K D, Meyer F B, et al. Natural history, evaluation, and management of intracranial vascular malformations[J]. Mayo Clin Proc, 2005, 80:269-281. [4]Spetzler R F, Martin N A. A proposed grading system for arteriovenous malformations[J]. J Neurosurg, 1986, 65(4):476-483. [5]Milholland B, Dong X, Zhang L, et al. Differences between germline and somatic mutation rates in humans and mice[J]. Nat Commun, 2017, 8:15183. [6]Maury E A, Walsh C A, Kahle K T. Neurosurgery elucidates somatic mutations[J]. Science, 2023, 382(6677):1360-1362. [7]Lawton M T, Rutledge W C, Kim H, et al. Brain arteriovenous malformations[J]. Nat Rev Dis Primers, 2015, 1:15008. [8]Nikolaev S I, Vetiska S, Bonilla X, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain[J]. N Engl J Med, 2018, 378(3):250-261. [9]Li H, Nam Y, Huo R, et al. De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation[J]. Circ Res, 2021, 129:825-839. [10]Hong T, Yan Y P, Li J W, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations[J]. Brain, 2019, 142(1):23-34. [11]Xu H Y, Huo R, Li H, et al. KRAS mutation-induced EndMT of brain arteriovenous malformation is mediated through the TGF-β/BMP-SMAD4 pathway[J]. Stroke Vasc Neurol, 2023, 8(3):197-206. [12]He Q H, Huo R, Wang J, et al. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations[J]. CNS Neurosci Ther, 2023, 29(5):1312-1324. [13]Al-Holou W N, O′Lynnger T M, Pandey A S, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults[J]. J Neurosurg Pediatr, 2012, 9(2):198-205. [14]Chohan M O, Marchiò S, Morrison L A, et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a review[J]. JAMA Neurol, 2019, 76(4):492-500. [15]Riant F, Bergametti F, Ayrignac X, et al. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM[J]. FEBS J, 2010, 277(5):1070-1075. [16]Akers A, Al-Shahi Salman R, A Awad I, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel[J]. Neurosurgery, 2017, 80(5):665-680. [17]Sahoo T, Johnson E W, Thomas J W, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1)[J]. Hum Mol Genet, 1999, 8(12):2325-2333. [18]Laberge-le Couteulx S, Jung H H, Labauge P, et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas[J]. Nat Genet, 1999, 23(2):189-193. [19]Denier C, Goutagny S, Labauge P, et al. Mutations within the MGC4607 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2004, 74(2):326-337. [20]Liquori C L, Berg M J, Siegel A M, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations[J]. Am J Hum Genet, 2003, 73(6): 1459-1464. [21]Bergametti F, Denier C, Labauge P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2005, 76(1):42-51. [22]Snellings D A, Hong C C, Ren A A, et al. Cerebral cavernous malformation: from mechanism to therapy[J]. Circ Res, 2021, 129(1):195-215. [23]Gault J, Shenkar R, Recksiek P, et al. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion[J]. Stroke, 2005, 36(4):872-874. [24]Gault J, Awad I A, Recksiek P, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells[J]. Neurosurgery, 2009, 65(1):138-144. [25]McDonald D A, Shi C B, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis[J]. Hum Mol Genet, 2014, 23(16):4357-4370. [26]Ren A A, Snellings D A, Su Y S, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862):271-276. [27]Weng J C, Yang Y X, Song D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation[J]. Am J Hum Genet, 2021, 108(5):942-950. [28]Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations[J]. Brain, 2021, 144(9):2648-2658. [29]Ressler A K, Snellings D A, Girard R, et al. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in cerebral cavernous malformations[J]. Nat Commun, 2023, 14(1):7009. [30]Huo R, Yang Y X, Sun Y F, et al. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation[J]. Angiogenesis, 2023, 26(2):295-312. [31]Naik S, Phadke R V, Taunk A, et al. Dynamic contrast-enhanced magnetic resonance imaging in diagnosis of cavernous hemangioma of cavernous sinus[J]. J Neurosci Rural Pract, 2017, 8(2):311-313. [32]Linskey M E, Sekhar L N. Cavernous sinus hemangiomas: a series, a review, and an hypothesis[J]. Neurosurgery, 1992, 30(1):101-108. [33]Huo R, Yang Y X, Xu H Y, et al. Somatic GJA4 mutation in intracranial extra-axial cavernous hemangiomas[J]. Stroke Vasc Neurol, 2023, 8(6):453-462. [34]Wang J, Tang J H, Yang Y X, et al. Genotype-phenotype correlations in multiple lesions of familial cerebral cavernous malformations concerning phosphatidylinositol 3-kinase catalytic subunit alpha mutations[J]. Clin Transl Med, 2024, 14(3):e1610. [35]Fu W L, Huo R, Yan Z H, et al. Mesenchymal behavior of the endothelium promoted by SMAD6 downregulation is associated with brain arteriovenous malformation microhemorrhage[J]. Stroke, 2020, 51(7):2197-2207. [36]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations[J]. Stroke, 2004, 35(10):2294-2300. [37]Achrol A S, Pawlikowska L, McCulloch C E, et al. Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations[J]. Stroke, 2006, 37(1):231-234. [38]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations[J]. Stroke, 2005, 36(10):2278-2280. [39]Hartmann K, Sadée C Y, Satwah I, et al. Imaging genomics: data fusion in uncovering disease heritability[J]. Trends Mol Med, 2023, 29(2):141-151. [40]Zabramski J M, Wascher T M, Spetzler R F, et al. The natural history of familial cavernous malformations: results of an ongoing study[J]. J Neurosurg, 1994, 80(3):422-432. [41]Zhou L F, Mao Y, Chen L. Diagnosis and surgical treatment of cavernous sinus hemangiomas: an experience of 20 cases[J]. Surg Neurol, 2003, 60(1):31-36. [42]Shi J, Hang C, Pan Y, et al. Cavernous hemangiomas in the cavernous sinus[J]. Neurosurgery, 1999, 45(6):1308-1313. |
| [1] | 郭宇, 陈伟观, 周三连, 汤莉巧, 孙王妍, 张冬梅, 卢红建. 急性缺血性脑卒中患者血清糖蛋白非转移性黑色素瘤蛋白B蛋白浓度与疾病严重度及预后的相关性分析[J]. 首都医科大学学报, 2025, 46(4): 702-709. |
| [2] | 任倩薇, 周思怡, 金鑫悦, 郭馥祯, 管仲军. 城市社区居民卒中相关影响因素分析:基于倾向评分匹配的病例对照研究[J]. 首都医科大学学报, 2025, 46(3): 520-526. |
| [3] | 王拥军, 刘涛, 刘子阳, 熊云云, 荆京, 谢雪微, 李子孝. 人工智能在脑血管病领域中的应用[J]. 首都医科大学学报, 2025, 46(2): 177-183. |
| [4] | 字晓慧, 夏雪, 李静, 张晓丽, 周全, 王安心, 王伊龙. 抗血小板治疗在静脉溶栓卒中患者中的应用研究进展[J]. 首都医科大学学报, 2025, 46(2): 234-242. |
| [5] | 伍琳, 孙君昭, 韩铖琛, 聂幸幸, 田宇红, 皮红英. 远端缺血适应对自发性脑出血患者的应用效果观察 [J]. 首都医科大学学报, 2025, 46(2): 356-362. |
| [6] | 董 晓, 张婉莹, 吉训明, 吴川杰. 《2024年美国心脏学会/美国卒中学会卒中一级预防指南》概述[J]. 首都医科大学学报, 2025, 46(1): 1-5. |
| [7] | 张婉婉, 董 晓, 于尔澜, 吉训明, 吴川杰. 人工智能在脑血管病诊疗中的应用[J]. 首都医科大学学报, 2025, 46(1): 6-10. |
| [8] | 国家卫生健康委加强脑卒中防治工作减少百万新发残疾工程专家委员会, 吉训明. 推进国家卫生健康委加强脑卒中防治工作减少百万新发残疾工程:中国脑卒中防治现状与战略[J]. 首都医科大学学报, 2025, 46(1): 11-14. |
| [9] | 亚•娜仁, 刘 闫, 周 霞, 朱德坤, 陈 枫, 马争飞, 李传辉, 孙中武. 视网膜中央动脉阻塞患者脑血管造影特征分析及预后研究[J]. 首都医科大学学报, 2025, 46(1): 15-21. |
| [10] | 褚学红, 申英杰, 王耀楼, 董 晓, 刘圆圆, 冯 艳, 姜缪文, 李 明, 吉训明, 吴川杰. 基于孟德尔随机化探索广泛的血管周围间隙负荷与缺血性卒中及其亚型和短暂性脑缺血发作的因果关系[J]. 首都医科大学学报, 2025, 46(1): 22-33. |
| [11] | 王银平, 孟灿灿, 吴文娟, 杨直堂. CD62P、CD40L及节律核受体Rev-erbα在缺血性脑卒中不同发病时间的表达[J]. 首都医科大学学报, 2025, 46(1): 34-40. |
| [12] | 詹艳丽, 李一吟, 李 平, 孙景萍, 黄良通, 蔡学礼. 基于区域卒中分级诊疗网络救治急性缺血性脑卒中的现状及疗效分析[J]. 首都医科大学学报, 2025, 46(1): 41-47. |
| [13] | 杨 笑, 孟媛媛, 杨靖仪, 王书函, 张立功. 血浆致动脉粥样硬化指数、三酰甘油-葡萄糖指数、脑小血管病影像学标志物对急性缺血性脑卒中患者静脉溶栓早期神经功能恢复的预测价值 [J]. 首都医科大学学报, 2025, 46(1): 48-55. |
| [14] | 张 萌, 马咏馨, 贾 琼, 张东威, 张昕红, 徐耀铭. 静脉溶栓治疗急性轻型非致残性缺血性脑卒中有效性和安全性的临床观察:一项单中心回顾性观察研究[J]. 首都医科大学学报, 2025, 46(1): 56-62. |
| [15] | 刘肖朦, 周绍娟, 邵小红, 徐文平, 宦 峰, 朱向阳. 南通市医防协同管理模式下脑卒中现状及四级预防[J]. 首都医科大学学报, 2025, 46(1): 63-67. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||