赵绍智,曹勇*
收稿日期:
2024-04-25
通讯作者:
曹勇
E-mail:caoyong@bjtth.org
Zhao Shaozhi, Cao Yong*
Received:
2024-04-25
摘要: 脑血管畸形 (cerebral vascular malformations, CVMs) 是指脑血管在胚胎时期因各种内、外界因素的影响,导致基因、细胞因子和蛋白等发生改变而引起的脑局部血管数量和结构的非肿瘤性发育异常所导致的疾病。血管内皮细胞基因突变作为关键始动因素之一,在CVMs的发生发展中起到了重要作用。了解CVMs中存在的内皮细胞突变对于预防其发生发展,开发靶向药物及指导临床治疗具有重要意义。本文将针对血管内皮细胞体细胞突变在CVMs中的发现、临床相关性及潜在的治疗意义进行综述。
中图分类号:
赵绍智, 曹勇. 血管内皮细胞体细胞突变与脑血管畸形[J]. 首都医科大学学报, doi: 10.3969/j.issn.1006-7795.2024.03.002.
Zhao Shaozhi, Cao Yong. Somatic mutations in endothelial cells and cerebral vascular malformations[J]. Journal of Capital Medical University, doi: 10.3969/j.issn.1006-7795.2024.03.002.
[1]Toulgoat F, Lasjaunias P. Vascular malformations of the brain[J]. Handb Clin Neurol, 2013, 112: 1043-1051. [2]Zafar A, Fiani B, Hadi H, et al. Cerebral vascular malformations and their imaging modalities[J]. Neurol Sci, 2020, 41(9):2407-2421. [3]Brown R D Jr, Flemming K D, Meyer F B, et al. Natural history, evaluation, and management of intracranial vascular malformations[J]. Mayo Clin Proc, 2005, 80:269-281. [4]Spetzler R F, Martin N A. A proposed grading system for arteriovenous malformations[J]. J Neurosurg, 1986, 65(4):476-483. [5]Milholland B, Dong X, Zhang L, et al. Differences between germline and somatic mutation rates in humans and mice[J]. Nat Commun, 2017, 8:15183. [6]Maury E A, Walsh C A, Kahle K T. Neurosurgery elucidates somatic mutations[J]. Science, 2023, 382(6677):1360-1362. [7]Lawton M T, Rutledge W C, Kim H, et al. Brain arteriovenous malformations[J]. Nat Rev Dis Primers, 2015, 1:15008. [8]Nikolaev S I, Vetiska S, Bonilla X, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain[J]. N Engl J Med, 2018, 378(3):250-261. [9]Li H, Nam Y, Huo R, et al. De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation[J]. Circ Res, 2021, 129:825-839. [10]Hong T, Yan Y P, Li J W, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations[J]. Brain, 2019, 142(1):23-34. [11]Xu H Y, Huo R, Li H, et al. KRAS mutation-induced EndMT of brain arteriovenous malformation is mediated through the TGF-β/BMP-SMAD4 pathway[J]. Stroke Vasc Neurol, 2023, 8(3):197-206. [12]He Q H, Huo R, Wang J, et al. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations[J]. CNS Neurosci Ther, 2023, 29(5):1312-1324. [13]Al-Holou W N, O′Lynnger T M, Pandey A S, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults[J]. J Neurosurg Pediatr, 2012, 9(2):198-205. [14]Chohan M O, Marchiò S, Morrison L A, et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a review[J]. JAMA Neurol, 2019, 76(4):492-500. [15]Riant F, Bergametti F, Ayrignac X, et al. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM[J]. FEBS J, 2010, 277(5):1070-1075. [16]Akers A, Al-Shahi Salman R, A Awad I, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel[J]. Neurosurgery, 2017, 80(5):665-680. [17]Sahoo T, Johnson E W, Thomas J W, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1)[J]. Hum Mol Genet, 1999, 8(12):2325-2333. [18]Laberge-le Couteulx S, Jung H H, Labauge P, et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas[J]. Nat Genet, 1999, 23(2):189-193. [19]Denier C, Goutagny S, Labauge P, et al. Mutations within the MGC4607 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2004, 74(2):326-337. [20]Liquori C L, Berg M J, Siegel A M, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations[J]. Am J Hum Genet, 2003, 73(6): 1459-1464. [21]Bergametti F, Denier C, Labauge P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2005, 76(1):42-51. [22]Snellings D A, Hong C C, Ren A A, et al. Cerebral cavernous malformation: from mechanism to therapy[J]. Circ Res, 2021, 129(1):195-215. [23]Gault J, Shenkar R, Recksiek P, et al. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion[J]. Stroke, 2005, 36(4):872-874. [24]Gault J, Awad I A, Recksiek P, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells[J]. Neurosurgery, 2009, 65(1):138-144. [25]McDonald D A, Shi C B, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis[J]. Hum Mol Genet, 2014, 23(16):4357-4370. [26]Ren A A, Snellings D A, Su Y S, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862):271-276. [27]Weng J C, Yang Y X, Song D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation[J]. Am J Hum Genet, 2021, 108(5):942-950. [28]Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations[J]. Brain, 2021, 144(9):2648-2658. [29]Ressler A K, Snellings D A, Girard R, et al. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in cerebral cavernous malformations[J]. Nat Commun, 2023, 14(1):7009. [30]Huo R, Yang Y X, Sun Y F, et al. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation[J]. Angiogenesis, 2023, 26(2):295-312. [31]Naik S, Phadke R V, Taunk A, et al. Dynamic contrast-enhanced magnetic resonance imaging in diagnosis of cavernous hemangioma of cavernous sinus[J]. J Neurosci Rural Pract, 2017, 8(2):311-313. [32]Linskey M E, Sekhar L N. Cavernous sinus hemangiomas: a series, a review, and an hypothesis[J]. Neurosurgery, 1992, 30(1):101-108. [33]Huo R, Yang Y X, Xu H Y, et al. Somatic GJA4 mutation in intracranial extra-axial cavernous hemangiomas[J]. Stroke Vasc Neurol, 2023, 8(6):453-462. [34]Wang J, Tang J H, Yang Y X, et al. Genotype-phenotype correlations in multiple lesions of familial cerebral cavernous malformations concerning phosphatidylinositol 3-kinase catalytic subunit alpha mutations[J]. Clin Transl Med, 2024, 14(3):e1610. [35]Fu W L, Huo R, Yan Z H, et al. Mesenchymal behavior of the endothelium promoted by SMAD6 downregulation is associated with brain arteriovenous malformation microhemorrhage[J]. Stroke, 2020, 51(7):2197-2207. [36]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations[J]. Stroke, 2004, 35(10):2294-2300. [37]Achrol A S, Pawlikowska L, McCulloch C E, et al. Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations[J]. Stroke, 2006, 37(1):231-234. [38]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations[J]. Stroke, 2005, 36(10):2278-2280. [39]Hartmann K, Sadée C Y, Satwah I, et al. Imaging genomics: data fusion in uncovering disease heritability[J]. Trends Mol Med, 2023, 29(2):141-151. [40]Zabramski J M, Wascher T M, Spetzler R F, et al. The natural history of familial cavernous malformations: results of an ongoing study[J]. J Neurosurg, 1994, 80(3):422-432. [41]Zhou L F, Mao Y, Chen L. Diagnosis and surgical treatment of cavernous sinus hemangiomas: an experience of 20 cases[J]. Surg Neurol, 2003, 60(1):31-36. [42]Shi J, Hang C, Pan Y, et al. Cavernous hemangiomas in the cavernous sinus[J]. Neurosurgery, 1999, 45(6):1308-1313. |
[1] | 顾超雄, 李 明. 不忘初心,砥砺前行,做科研先锋——中国工程院院士吉训明教授[J]. 首都医科大学学报, 2024, 45(3): 375-378. |
[2] | 李 悦, 李 曼, 左 龙, 杨 磊, 秦 伟, 胡文立. 体位性低血压与脑小血管病综合评分的相关性研究[J]. 首都医科大学学报, 2024, 45(3): 508-514. |
[3] | 王 维, 宫 萍. 中枢性孤立性眩晕的临床特点及影像学分析[J]. 首都医科大学学报, 2024, 45(2): 333-339. |
[4] | 胡正芳, 王娟, 菅敏钰, 韩如泉. 术中吸氧浓度对行脑血管再通术患者术后神经功能和并发症的影响[J]. 首都医科大学学报, 2023, 44(5): 865-871. |
[5] | 梁发, 吴侑煊, 王鑫焱, 菅敏钰, 刘海洋, 韩如泉. 全身麻醉转化对急性脑卒中患者机械取栓术后神经功能的影响[J]. 首都医科大学学报, 2023, 44(2): 237-243. |
[6] | 胡舒缘, 张开元, 谷亚钦, 李京凯, 周陈, 吉训明, 段建钢. 糖皮质激素联合抗凝在急性/亚急性重症颅内静脉血栓治疗中的探索[J]. 首都医科大学学报, 2023, 44(2): 280-288. |
[7] | 秦琳慧, 李宁, 杨宇, 杨勇, 任长虹. 肢体远隔缺血期适应联合后适应促进大鼠缺血性脑卒中模型神经发生的作用及机制[J]. 首都医科大学学报, 2023, 44(1): 54-61. |
[8] | 李雪, 范俊芬, 王荣亮, 马青峰, 罗玉敏, 赵海苹. HDAC2对急性缺血性卒中患者中性粒细胞TBC蛋白家族成员的表观调控[J]. 首都医科大学学报, 2023, 44(1): 62-71. |
[9] | 姜富城, 黄菊梅, 冯跃先, 钟红亮, 贾建文, 杨洪超, 刘赫, 刘扬. 清醒镇静在急性缺血性脑卒中血管内治疗中的应用效果及预后影响评估[J]. 首都医科大学学报, 2023, 44(1): 72-77. |
[10] | 李森, 郭学文, 赵鑫, 黄安琪, 林婧格, 李兴茂, 李秀, 杜怡峰, 赵咏梅, 白洁, 夏章勇. 急性缺血性脑卒中合并糖尿病人群的血糖变异性与神经功能恶化的相关性分析[J]. 首都医科大学学报, 2023, 44(1): 78-84. |
[11] | 赵继宗. 我国脑心血管共患疾病现状与临床研究[J]. 首都医科大学学报, 2022, 43(5): 671-673. |
[12] | 周一帆, 姜慧敏, 卫慧敏, 谷雨航, 胡文伯, 刘璐, 周陈, 吉训明. 加强脑静脉研究,提升神经系统疾病诊疗水平——脑静脉系统解剖、生理和临床概述[J]. 首都医科大学学报, 2022, 43(4): 505-520. |
[13] | 谷强, 余孝君, 张津. 高龄与中低龄老年轻型缺血性脑卒中临床特点及预后分析[J]. 首都医科大学学报, 2022, 43(3): 474-479. |
[14] | 赵文博, 任长虹, 李思颉, 马红蕊, 吉训明. 低氧与缺血适应防治缺血性脑卒中新技术体系的创研及推广应用——2020年度国家科学技术进步奖二等奖[J]. 首都医科大学学报, 2022, 43(1): 1-5. |
[15] | 李子孝, 赵性泉, 王拥军. 脑血管病医疗质量改进关键技术与体系的建立和应用——2020年度国家科学技术进步奖二等奖[J]. 首都医科大学学报, 2022, 43(1): 6-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||