[1] 郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志, 2019, 41(1):19-28. [2] Scully O J, Bay B H, Yip G, et al. Breast cancer metastasis[J]. Cancer Genomics Proteomics, 2012, 9(5):311-320. [3] 姜建平,韦长元,杨伟萍,等.青年女性乳腺癌病理学特点及预后因素分析[J].中华肿瘤防治杂志,2017,24(4):263-267. [4] 张韶彤,王素贞,于清溪,等.乳腺癌术后远期复发转移患者临床特征分析[J].中华肿瘤防治杂志,2019,26(6):406-409. [5] Kwong A, Mang O W K, Wong C H N, et al. Breast cancer in Hong Kong, Southern China:The first population-based analysis of epidemiological characteristics, stage-specific, cancer-specific, and disease-free survival in breast cancer patients:1997-2001[J]. Ann Surg Oncol, 2011, 18(11):3072-3078. [6] Liang D, Zhang W, Wang A, et al. Treating metastatic triple negative breast cancer with CD44/neuropilin dual molecular targets of multifunctional nanoparticles[J]. Biomaterials, 2017, 137:23-36. [7] Liang C, Xu L, Song G, et al. Emerging nanomedicine approaches fighting tumor metastasis:animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy[J]. Chem Soc Rev, 2016, 45(22):6250-6269. [8] 黄子奇.多药耐药相关因子与肿瘤侵袭转移的相关性研究[J].国际肿瘤学杂志, 2012, 39(5):359-362. [9] Wang A, Liang D, Liu Y, et al. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors[J]. Biomaterials, 2015, 53:160-172. [10] Wang A, Tong S, Hu X, et al. Preparation and anti-MDR tumors study of folate and TPGS dual-modified DSPE-PEG micelles loaded with docetaxel[J]. J Chin Pharm Sci, 2015, 24(7):419-426. [11] Secondini C, Coquoz O, Spagnuolo L, et al. Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade[J]. Oncoimmunology, 2017, 6(6):e1316437. [12] 张修彦,詹纯列. Balb/c、KM、NIH三种小鼠血常规、主要脏器质量、主要脏器系数的测定与比较[J].湖北农业科学, 2012, 5(1):962-964. [13] Wakaskar R R. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes[J]. J Drug Target, 2018, 26(4):311-318. [14] Zhou Y, Dai Z. New strategies in the design of nanomedicine to oppose uptake by the mononuclear phagocyte system for enhancing cancer therapeutic efficacy[J]. Chem Asian J, 2018, 13(22):3333-3340. [15] Koide H, Asai T, Kato H, et al. Size-dependent induction of accelerated blood clearance phenomenon by repeated injections of polymeric micelles[J]. Int J Pharmaceut, 2012, 432(1-2):75-79. [16] Koide H, Asai T, Hatanaka K, et al. Particle size-dependent triggering of accelerated blood clearance phenomenon[J]. Int J Pharmaceut, 2008, 362(1-2):197-200. [17] Youn Y, Bae Y. Perspectives on the past, present, and future of cancer nanomedicine[J]. Adv Drug Deliv Rev, 2018, 130:3-11. [18] Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer:Drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 93:52-79. [19] Zhao H, Yung L Y L. Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting[J]. J Biomed Mater Res A, 2009, 91(2):505-518. [20] Gould S J, Subramani S. Firefly luciferase as a tool in molecular and cell biology[J]. Anal Biochem, 1988, 175(1):5-13. [21] Taylor A, Sharkey J, Plagge A, et al. Multicolour in vivo bioluminescence imaging using a nanoluc-based BRET reporter in combination with firefly luciferase[J]. Contrast Media Mol Imaging, 2018:2514796. [22] Smeda M, Kieronska A, Adamski M, et al. Nitric oxide deficiency and endothelial-mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice[J]. Breast Cancer Res, 2018, 20:86. [23] Li Y, Jin M, Shao S, et al. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model[J]. BMC Cancer, 2014, 14:329. |