[1] Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28(1): 31-38.
[2] Hunt E B. Artificial intelligence[M].Seattle, Washington, United States: Academic Press, 2014.
[3] McCarthy J. Mathematical logic in artificial intelligence[Z]. 1988: 297-311.
[4] Smolensky P. Connectionist AI, symbolic AI, and the brain[J]. Artif Intell Rev, 1987, 1: 95-109.
[5] Fahlman S F, Hinton G E. Connectionist architectures for artificial intelligence[J]. Computer, 1987, 20(1): 100-109.
[6] Li X H, Cao C C, Shi Y H, et al. A survey of data-driven and knowledge-aware explainable AI[J]. IEEE Trans Knowl Data Eng, 2022, 34(1): 29-49.
[7] Ntoutsi E, Fafalios P, Gadiraju U, et al. Bias in data-driven artificial intelligence systems-an introductory survey[J]. Wiley Interdiscip Rev Data Min Knowl Discov, 2020, 10(3): e1356.
[8] Kulkarni S, Seneviratne N, Baig M S, et al. Artificial intelligence in medicine: where are we now?[J]. Acad Radiol, 2020, 27(1): 62-70.
[9] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[10] Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[11] Keskinbora K, Güven F. Artificial intelligence and ophthalmology[J]. Turk J Ophthalmol, 2020, 50(1):37-43.
[12] Szolovits P, Patil R S, Schwartz W B. Artificial intelligence in medical diagnosis[J]. Ann Intern Med, 1988, 108(1): 80-87.
[13] Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development[J]. Drug Discov Today, 2021, 26(1):80-93.
[14] Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery[J]. Mol Divers, 2021, 25(3): 1315-1360.
[15] Zhao Y H, Chen Y, Cheng K W, et al. Artificial intelligence based multimodal language decoding from brain activity: a review[J]. Brain Res Bull, 2023, 201: 110713.
[16] Saha S, Mamun K A, Ahmed K, et al. Progress in brain computer interface: challenges and opportunities[J]. Front Syst Neurosci, 2021, 15: 578875.
[17] Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control[J]. Psychophysiology, 2006, 43(6): 517-532.
[18] Peksa J, Mamchur D. State-of-the-art on brain-computer interface technology[J]. Sensors, 2023, 23(13): 6001.
[19] 钛媒体APP. 马斯克: 人类首次接受脑机接口芯片植入,Neuralink估值已超350亿[EB/OL]. (2024-02-01)[2024-03-03]. https://baijiahao.baidu.com/s?id=1789693762879489403&wfr=spider&for=pc%202024.
[20] 光明网. 我国脑机接口技术重大突破!四肢截瘫患者实现脑控喝水[EB/OL]. (2024-01-31)[2024-03-03]. https://baijiahao.baidu.com/s?id=1789599768084928136&wfr=spider&for=pc%202024.
[21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2024-03-03]. https://arxiv.org/abs/1706.03762.
[22] ChatGPT I. Introducing ChatGPT[Z]. https://openai.com/blog/chatgpt.
[23] Nori H, King N, McKinney S M, et al. Capabilities of gpt-4 on medical challenge problems[EB/OL]. (2023-03-20)[2024-03-03]. https://arxiv.org/abs/2303.13375.
[24] Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine[J]. N Engl J Med, 2023, 388(13): 1233-1239.
[25] Waisberg E, Ong J, Masalkhi M, et al. GPT-4:a new era of artificial intelligence in medicine[J]. Ir J Med Sci, 2023, 192(6):3197-3200.
[26] 彭春晓, 卢国强. 北京天坛医院和北京理工大学团队合作创建医学影像大模型,首位中文数字放射科医生诞生[EB/OL]. (2024-03-05)[2024-03-20]. https://www.bjtth.org/Html/News/Articles/211805.html.
[27] 新智元. 全球最强大模型一夜易主,Claude 3狙击GPT-5,理解力接近人类[EB/OL]. (2024-02-28)[2024-03-03]. https://baijiahao.baidu.com/s?id=1792616467555125268&wfr=spider&for=pc
[28] Topol E J. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56.
[29] Nahavandi D, Alizadehsani R, Khosravi A, et al. Application of artificial intelligence in wearable devices: opportunities and challenges[J]. Comput Methods Programs Biomed, 2022, 13: 106541.
[30] Dunn J, Runge R, Snyder M. Wearables and the medical revolution[J]. Per Med, 2018, 15(5):429-448.
[31] 于观贞, 刘西洋, 张彦春, 等. 人工智能在临床医学中的应用与思考[J]. 第二军医大学学报, 2018, 39(4): 358-365.
[32] Bing D, Ying J, Miao J, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models[J]. Clin Otolaryngol, 2018, 43(3): 868-874.
[33] Szaleniec J, Wiatr M, Szaleniec M, et al. Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients[J]. Comput Biol Med, 2013, 43(1):16-22.
[34] Crowson M G, Lin V, Chen J M, et al. Machine learning and cochlear implantation-a structured review of opportunities and challenges[J]. Otol Neurotol, 2020, 41(1): e36-e45.
[35] Feng G, Ingvalson E M, Grieco-Calub T M, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci U S A, 2018, 115(5): e1022-e1031.
[36] Wathour J, Govaerts P J, Lacroix E, et al. Effect of a CI programming fitting tool with artificial intelligence in experienced cochlear implant patients[J]. Otol Neurotol, 2023, 44(3): 209-215.
[37] Dimauro G, Ciprandi G, Deperte F, et al. Nasal cytology with deep learning techniques[J]. Int J Med Inform, 2019, 122: 13-19.
[38] Wu Q W, Chen J N, Ren Y, et al. Artificial intelligence for cellular phenotyping diagnosis of nasal polyps by whole-slide imaging[J]. EBioMedicine, 2021, 66: 103336.
[39] Ding J, Yue C L, Wang C S, et al. Machine learning method for the cellular phenotyping of nasal polyps from multicentre tissue scans[J]. Expert Rev Clin Immunol, 2023, 19(8):1023-1028.
[40] Erdenebayar U, Park J U, Jeong P, et al. Obstructive sleep apnea screening using a piezo-electric sensor[J]. J Korean Med Sci, 2017, 32(6): 893-899.
[41] Geng Z X, Hoffman M R, Jones C A, et al. Three-dimensional analysis of pharyngeal high-resolution manometry data[J]. Laryngoscope, 2013, 123(7): 1746-1753.
[42] Tsui S Y, Tsao Y, Lin C W, et al. Demographic and symptomatic features of voice disorders and their potential application in classification using machine learning algorithms[J]. Folia Phoniatr Logop, 2018, 70(3/4): 174-182.
[43] Liang S J, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning[J]. Eur Radiol, 2019, 29(4): 1961-1967.
[44] Zhu W T, Huang Y F, Zeng L, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2): 576-589.
[45] Cheshire W P. Loopthink: a limitation of medical artificial intelligence[J]. Ethics & Med, 2017, 33(1): 7-12.
[46] Oh S, Kim J H, Choi S W, et al. Physician confidence in artificial intelligence: an online mobile survey[J]. J Med Internet Res, 2019, 21(3): e12422.
[47] Char D S, Shah N H, Magnus D. Implementing machine learning in health care-addressing ethical challenges[J]. N Engl J Med, 2018, 378(11):981-983.
[48] 朱志玲, 李松, 管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120.
[49] He B X, Guo Y, Zhu Y B, et al. From signal to knowledge: the diagnostic value of raw data in the artificial intelligence prediction of human data for the first time[J]. Engineering, 2024, 34(3): 60-70.
[50] Mosch L, Fürstenau D, Brandt J, et al. The medical profession transformed by artificial intelligence: qualitative study[J]. Digit Health, 2022, 8: 20552076221143903.
|