[1] Jonas A M, Raj R. Vaping-related acute parenchymal lung injury: a systematic review[J]. Chest, 2020, 158(4): 1555-1565.
[2] Mokrá D. Acute lung injury — from pathophysiology to treatment[J]. Physiol Res, 2020, 69(Suppl 3): S353-S366.
[3] 刘天涯. 地塞米松棕榈酸酯固体脂质纳米粒治疗急性肺损伤的研究[D]. 成都: 成都大学, 2023.
[4] Jiang H J, Li J, Wang L, et al. Total glucosides of paeony: a review of its phytochemistry, role in autoimmune diseases, and mechanisms of action[J]. J Ethnopharmacol, 2020, 258: 112913.
[5] Zhang L, Yu J, Wang C, et al. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA)[J]. Funct Plant Biol, 2019, 46(2): 107-117.
[6] Zhang J, Fu Y W, Yang B, et al. Total glucosides of paeony inhibits liver fibrosis and inflammatory response associated with cirrhosis via the FLI1/NLRP3 axis[J]. Am J Transl Res, 2022, 14(6): 4321-4336.
[7] Wang K, Wu Y G, Su J, et al. Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys[J]. Am J Chin Med, 2012, 40(3): 521-536.
[8] Sun Y, Zhang J, Huo R F, et al. Paeoniflorin inhibits skin lesions in imiquimod-induced psoriasis-like mice by downregulating inflammation[J]. Int Immunopharmacol, 2015, 24(2): 392-399.
[9] 畅秀丽, 张安兵. 白芍总苷调控NF-κB/NLRP3信号通路对急性痛风性关节炎大鼠的影响机制研究[J]. 中国免疫学杂志, 2023, 39(2): 313-317.
[10] 朱军, 洪明奕, 石程吉, 等. 基于网络药理学的白芍总苷改善大鼠脑出血后神经炎症的作用及机制研究[J]. 中药药理与临床, 2023, 39(12): 70-78.
[11] Li L Y, Ma L, Dong W L. Total glucosides of paeony (Paeonia lactiflora) alleviates blood-brain barrier disruption and cerebral ischemia/reperfusion injury in rats via suppressing inflammation and apoptosis[J]. Pharmazie, 2020, 75(5): 208-212.
[12] D'Alessio F R. Mouse models of acute lung injury and ARDS[J]. Methods Mol Biol, 2018, 1809: 341-350.
[13] 唐木兰, 曾春晖, 黄鑫波, 等. 双氢杨梅树皮素调节巨噬细胞极化改善小鼠急性肺损伤[J]. 免疫学杂志, 2023, 39(7): 625-631.
[14] Xu T, Qiao J, Zhao L, et al. Effect of dexamethasone on acute respiratory distress syndrome induced by the H5N1 virus in mice[J]. Eur Respir J, 2009, 33(4): 852-860.
[15] Millar M W, Fazal F, Rahman A. Therapeutic targeting of NF-κB in acute lung injury: a double-edged sword[J]. Cells, 2022, 11(20): 3317.
[16] Zhang H, Liu J L, Zhou Y L, et al. Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells[J]. Int J Biol Sci, 2022, 18(8): 3337-3357.
[17] Ye C, Li H, Bao M, et al. Alveolar macrophage-derived exosomes modulate severity and outcome of acute lung injury[J]. Aging, 2020, 12(7): 6120-6128.
[18] 刘军, 张朋书, 于涛, 等. 氯沙坦抑制肺树突状细胞活化对小鼠急性肺损伤的保护效应[J]. 中华医学杂志, 2014, 94(41): 3216-3219.
[19] Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
[20] Long M E, Mallampalli R K, Horowitz J C. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022, 136(10): 747-769.
[21] Zhou H T, Fan E K, Fan J. Cell-cell interaction mechanisms in acute lung injury[J]. Shock, 2021, 55(2): 167-176.
[22] 凌林, 佟晶, 曾良. 芍药苷通过激活Nrf2/Keap1信号通路改善脓毒症急性肺损伤的研究[J]. 四川大学学报: 医学版, 2020, 51(5): 664-669.
[23] Yang X Z, Wei W. CP-25, a compound derived from paeoniflorin: research advance on its pharmacological actions and mechanisms in the treatment of inflammation and immune diseases[J]. Acta Pharmacol Sin, 2020, 41(11): 1387-1394.
[24] Huang X F, Xiu H Q, Zhang S F, et al. The role of macrophages in the pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018, 2018: 1264913.
[25] Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis[J]. Cells, 2021, 10(2): 436.
[26] 贾冬. JMJD3通过下调IL4i1诱导巨噬细胞M1/M2比例升高在脂多糖诱导急性肺损伤中的机制探讨[D]. 沈阳: 中国医科大学, 2022.
[27] Lu J J, Huang J H, Shan M T, et al. Progranulin ameliorates lung inflammation in an LPS-induced acute lung injury mouse model by modulating macrophage polarization and the MAPK pathway[J]. Ann Clin Lab Sci, 2021, 51(2): 220-230.
[28] Johnston L K, Rims C R, Gill S E, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4): 417-426.
[29] Li M Z, Wu Y H, Ali M, et al. Endometrial stromal cells treated by tumor necrosis factor-α stimulate macrophages polarized toward M2 via interleukin-6 and monocyte chemoattractant protein-1[J]. J Obstet Gynaecol Res, 2020, 46(2): 293-301.
[30] Daniel B, Belk J A, Meier S L, et al. Macrophage inflammatory and regenerative response periodicity is programmed by cell cycle and chromatin state[J]. Mol Cell, 2023, 83(1): 121-138.e7.
[31] Seim G L, Fan J. A matter of time: temporal structure and functional relevance of macrophage metabolic rewiring[J]. Trends Endocrinol Metab, 2022, 33(5): 345-358.
[32] 周舫, 任亚南, 王娜, 等. NOX1与NF-κB对TNF-α诱导A549细胞氧化损伤的影响[J]. 中国职业医学, 2019(2): 188-193.
[33] 罗远材, 郭路. NF-κBp65、p-NF-κBp65在宫颈病变组织中的表达及意义[J]. 中国妇幼保健, 2013, 28(22): 3660-3663.
[34] 吴海峰. IKIP在NF-κB介导的炎症反应中的作用及机制[D]. 济南: 山东大学, 2020.
[35] 邓多, 谭会玲, 上官云兰, 等. 云南松松塔对LPS诱导急性肺损伤大鼠炎症和氧化应激的影响[J]. 中成药, 2021, 43(7): 1721-1726.
[36] Zhu Y H, Han Q Q, Wang L, et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway[J]. J Ethnopharmacol, 2023, 301: 115763.
|