[1] Mijajlovic′ M D, Pavlovic′ A, Brainin M, et al. Post-stroke dementia - a comprehensive review[J]. BMC Med, 2017, 15(1): 11.
[2] Huang Y Y, Chen S D, Leng X Y, et al. Post-stroke cognitive impairment: epidemiology, risk factors, and management[J]. J Alzheimers Dis, 2022, 86(3): 983-999.
[3] 吴永亚, 边红. 脑卒中后认知功能障碍研究进展 [J]. 神经病学与神经康复学杂志, 2020, 16(1): 34-40.
[4] 汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021[J]. 中国卒中杂志, 2021, 16(4): 376-389.
[5] Li W, Chaudhari K, Shetty R, et al. Metformin alters locomotor and cognitive function and brain metabolism in normoglycemic mice[J]. Aging Dis, 2019, 10(5): 949-963.
[6] White A T, Murphy A N. Administration of thiazolidinediones for neuroprotection in ischemic stroke: a pre-clinical systematic review[J]. J Neurochem, 2010, 115(4): 845-853.
[7] 李森, 黄安琪, 郭健飞,等. 沙格列汀对2型糖尿病患者缺血性脑卒中后认知功能的影响[J]. 首都医科大学学报, 2019, 40(5): 715-720.
[8] 张林, 郑培华, 张永文. 利格列汀对老年2型糖尿病合并脑卒中轻度认知障碍患者血糖及认知功能的影响[J]. 中国临床研究, 2020, 33(8): 1062-1065.
[9] Goldenberg R M, Cheng A Y Y, Fitzpatrick T, et al. Benefits of GLP-1 (glucagon-like peptide 1) receptor agonists for stroke reduction in type 2 diabetes: a call to action for neurologists[J]. Stroke, 2022, 53(5): 1813-1822.
[10] Society C D. 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695.
[11] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国急性缺血性卒中诊治指南2023[J].中华神经科杂志, 2024,57(6):523-559.
[12] Philis-Tsimikas A, Aroda V R, De Block C, et al. Higher derived time in range with IDegLira versus insulin glargine U100 in people with type 2 diabetes[J]. J Diabetes Sci Technol, 2024, 18(3): 653-659.
[13] Lees R, Selvarajah J, Fenton C, et al. Test accuracy of cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke[J]. Stroke, 2014, 45(10): 3008-3018.
[14] Wei X, Ma Y, Wu T, et al. Which cutoff value of the montreal cognitive assessment should be used for post-stroke cognitive impairment? A systematic review and meta-analysis on diagnostic test accuracy[J]. Int J Stroke, 2023, 18(8): 908-916.
[15] Rost N S, Brodtmann A, Pase M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271.
[16] Rueda M R, Moyano S, Rico-Picó J. Attention: The grounds of self-regulated cognition[J]. Wiley Interdiscip Rev Cogn Sci, 2023, 14(1): e1582.
[17] Lo J W, Crawford J D, Desmond D W, et al. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups[J]. Neurology, 2019, 93(24): e2257-e2271.
[18] Munthe-Kaas R, Aam S, Saltvedt I, et al. Test accuracy of the montreal cognitive assessment in screening for early poststroke neurocognitive disorder: The nor-COAST Study[J]. Stroke, 2021, 52(1): 317-320.
[19] Kirvalidze M, Hodkinson A, Storman D, et al. The role of glucose in cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: A systematic review of observational studies[J]. Neurosci Biobehav Rev, 2022, 135: 104551.
[20] Ortiz G G, Huerta M, González-Usigli H A, et al. Cognitive disorder and dementia in type 2 diabetes mellitus[J]. World J Diabetes, 2022, 13(4): 319-337.
[21] Koekkoek P S, Kappelle L J, van den Berg E, et al. Cognitive function in patients with diabetes mellitus: Guidance for daily care[J]. Lancet Neurol, 2015, 14(3): 329-340.
[22] Chen C, Wu S, Hong Z, et al. Chronic hyperglycemia regulates microglia polarization through ERK5[J]. Aging (Albany NY), 2019, 11(2): 697-706.
[23] Jackson L, Dumanli S, Johnson M H, et al. Microglia knockdown reduces inflammation and preserves cognition in diabetic animals after experimental stroke[J]. J Neuroinflammation, 2020, 17(1): 137.
[24] Kang X, Wang D, Zhang L, et al. Exendin-4 ameliorates tau hyperphosphorylation and cognitive impairment in type 2 diabetes through acting on Wnt/β-catenin/NeuroD1 pathway[J]. Mol Med, 2023, 29(1): 118.
[25] Ma Z Y, Wu Y Y, Cui H Y, et al. Factors influencing post-stroke cognitive impairment in patients with type 2 diabetes mellitus[J]. Clin Interv Aging, 2022, 17: 653-664.
[26] Lim J S, Kim C, Oh M S, et al. Effects of glycemic variability and hyperglycemia in acute ischemic stroke on post-stroke cognitive impairment[J]. J Diabetes Complications, 2018, 32(7): 682-687.
[27] Weinstein G, Davis-Plourde K L, Conner S, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer's disease: Pooled analysis from 5 cohorts[J]. PLoS One, 2019, 14(2): e0212293.
[28] 潘琦, 郭立新. 全面正确评价肠促胰素的生物学效应[J]. 中华糖尿病杂志, 2023,15(9): 790-796.
[29] Bailey C J. GIP analogues and the treatment of obesity-diabetes[J]. Peptides, 2020, 125: 170202.
[30] Gilbert M P, Pratley R E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials[J]. Front Endocrinol (Lausanne), 2020, 11: 178.
[31] Cáceres-Farfán L, Moreno-Loaiza M, Cubas W S. Ankle-brachial index: more than a diagnostic test?[J]. Arch Peru Cardiol Cir Cardiovasc, 2021, 2(4): 254-262.
[32] Wei Y, Liu C, Liu Y, et al. The association between time in the glucose target range and abnormal ankle-brachial index: a cross-sectional analysis[J]. Cardiovasc Diabetol, 2022, 21(1): 281.
[33] McClean P L, Gault V A, Harriott P, et al. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease[J]. Eur J Pharmacol, 2010, 630(1-3): 158-162.
[34] Diz-Chaves Y, Herrera-Pérez S, González-Matías L C, et al. Effects of glucagon-like peptide 1 (GLP-1) analogs in the hippocampus[J]. Vitam Horm, 2022, 118: 457-478.
[35] Yu C J, Ma D, Song L L, et al. The role of GLP-1/GIP receptor agonists in Alzheimer's disease[J]. Adv Clin Exp Med, 2020, 29(6): 661-668.
[36] Li Q X, Gao H, Guo Y X, et al. GLP-1 and underlying beneficial actions in Alzheimer's disease, hypertension, and NASH[J]. Front Endocrinol (Lausanne), 2021, 12: 721198.
[37] Lee C H, Jeon S J, Cho K S, et al. Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses[J]. Mol Neurobiol, 2018, 55(4): 3007-3020.
[38] Du H, Meng X, Yao Y, et al. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease[J]. Front Endocrinol (Lausanne), 2022, 13: 1033479.
[39] Chan E, Altendorff S, Healy C, et al. The test accuracy of the montreal cognitive assessment (MoCA) by stroke lateralisation[J]. J Neurol Sci, 2017, 373: 100-104.
|