[1] Golezar S, Ramezani Tehrani F, Khazaei S, et al. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis[J]. Climacteric, 2019, 22(4): 403-411.
[2] Vogt E C, Real F G, Husebye E S, et al. Premature menopause and autoimmune primary ovarian insufficiency in two international multi-center cohorts[J]. Endocr Connect, 2022, 11(5): e220024.
[3] 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
[4] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.
[5] Kim S, Kim S W, Han S J, et al. Molecular mechanism and prevention strategy of chemotherapy- and radiotherapy-induced ovarian damage[J]. Int J Mol Sci, 2021, 22(14): 7484.
[6] Jadoul P, Donnez J. How does bone marrow transplantation affect ovarian function and fertility?[J]. Curr Opin Obstet Gynecol, 2012, 24(3): 164-171.
[7] Stuenkel C A, Gompel A. Primary ovarian insufficiency[J]. N Engl J Med, 2023, 388(2): 154-163.
[8] Ruan X Y. Chinese society of gynecological endocrinology affiliated to the international society of gynecological endocrinology guideline for ovarian tissue cryopreservation and transplantation[J]. Gynecol Endocrinol, 2018, 34(12): 1005-1010.
[9] Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion[J]. Fertil Steril, 2014, 101(5): 1237-1243.
[10] Donnez J, Dolmans M M. Fertility preservation in women[J]. Nat Rev Endocrinol, 2013, 9(12): 735-749.
[11] Oktay K, Harvey B E, Loren A W. Fertility preservation in patients with cancer: ASCO clinical practice guideline update summary[J]. J Oncol Pract, 2018, 14(6): 381-385.
[12] Lambertini M, Peccatori F A, Demeestere I, et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12): 1664-1678.
[13] Kieu V, Stern C, Harris J, et al. Australian fertility preservation guidelines for people with cancer 2022: review and recommendations[J]. Med J Aust, 2022, 217(11): 564-569.
[14] Donnez J, Dolmans M M, Demylle D, et al. Live birth after orthotopic transplantation of cryopreserved ovarian tissue[J]. Lancet, 2004, 364(9443): 1405-1410.
[15] Dolmans M M, Donnez J, Cacciottola L. Fertility preservation: the challenge of freezing and transplanting ovarian tissue[J]. Trends Mol Med, 2021, 27(8): 777-791.
[16] Dolmans M M, Donnez J. Fertility preservation in women for medical and social reasons: oocytes vs ovarian tissue[J]. Best Pract Res Clin Obstet Gynaecol, 2021, 70: 63-80.
[17] Ruan X, Du J, Korell M, et al. Case report of the first successful cryopreserved ovarian tissue retransplantation in China[J]. Climacteric, 2018, 21(6): 613-616.
[18] Ruan X, Du J, Lu D, et al. First pregnancy in China after ovarian tissue transplantation to prevent premature ovarian insufficiency[J]. Climacteric, 2021, 24(6): 624-628.
[19] Ruan X, Du J, Lu D, et al. First live birth in China after cryopreserved ovarian tissue transplantation to prevent premature ovarian insufficiency[J]. Climacteric, 2022, 25(4): 421-424.
[20] Ruan X, Cheng J, Korell M, et al. Ovarian tissue cryopreservation and transplantation prevents iatrogenic premature ovarian insufficiency: first 10 cases in China[J]. Climacteric, 2020, 23(6): 574-580.
[21] Bojic S, Murray A, Bentley B L, et al. Winter is coming: the future of cryopreservation[J]. BMC Biol, 2021, 19(1): 56.
[22] Lewis J K, Bischof J C, Braslavsky I, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation[J]. Cryobiology, 2016, 72(2): 169-182.
[23] Dou M J, Lu C N, Rao W. Bioinspired materials and technology for advanced cryopreservation[J]. Trends Biotechnol, 2022, 40(1): 93-106.
[24] Karimi S, Tabatabaei S N, Novin M G, et al. Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model[J]. Heliyon, 2023, 9(8): e18828.
[25] Hou Y, Lu C N, Dou M J, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation[J]. Acta Biomater, 2020, 102: 403-415.
[26] Diaz-Dussan D, Peng Y Y, Sengupta J, et al. Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds[J]. Biomacromolecules, 2020, 21(3): 1264-1273.
[27] Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion[J]. Bone Marrow Transplant, 2014, 49(4): 469-476.
[28] Pal R, Mamidi M K, Das A K, et al. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells[J]. Arch Toxicol, 2012, 86(4): 651-661.
[29] Yang J, Pan C, Zhang J M, et al. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants[J]. ACS Appl Mater Interfaces, 2017, 9(49): 42516-42524.
[30] He W, Zhan T J, Han H X, et al. Optimization of deep eutectic solvents enables green and efficient cryopreservation[J]. Langmuir, 2024, 40(1): 624-637.
[31] Ma J F, Zhang X Y, Cui Z X, et al. Investigation into antifreeze performances of natural amino acids for novel CPA development[J]. J Mater Chem B, 2023, 11(18): 4042-4049.
[32] Zhang L, Xue X, Yan J, et al. Cryobiological characteristics of l-proline in mammalian oocyte cryopreservation[J]. Chin Med J, 2016, 129(16): 1963-1968.
[33] Fan Q R, Dou M J, Mao J Q, et al. Strong hydration ability of silk fibroin suppresses formation and recrystallization of ice crystals during cryopreservation[J]. Biomacromolecules, 2022, 23(2): 478-486.
[34] Rao W, Huang H S, Wang H, et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant[J]. ACS Appl Mater Interfaces, 2015, 7(8): 5017-5028.
[35] Sugishita Y, Meng L B, Suzuki-Takahashi Y, et al. Quantification of residual cryoprotectants and cytotoxicity in thawed bovine ovarian tissues after slow freezing or vitrification[J]. Hum Reprod, 2022, 37(3): 522-533.
[36] Taylor M J, Weegman B P, Baicu S C, et al. New approaches to cryopreservation of cells, tissues, and organs[J]. Transfus Med Hemother, 2019, 46(3): 197-215.
[37] Amorim C A, Donnez J, Dehoux J P, et al. Long-term follow-up of vitrified and autografted baboon (Papio anubis) ovarian tissue[J]. Hum Reprod, 2019, 34(2): 323-334.
[38] ESHRE Guideline Group on Female Fertility Preservation, Anderson R A, Amant F, et al. ESHRE guideline: female fertility preservation[J]. Hum Reprod Open, 2020, 2020(4): hoaa052.
[39] Du J, Ruan X Y, Jin F Y, et al. Abnormalities of early folliculogenesis and serum anti-Müllerian hormone in Chinese patients with polycystic ovary syndrome[J]. J Ovarian Res, 2021, 14(1): 36.
[40] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.
[41] Yang H P, Zhang S W, Liu P, et al. Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[J]. Cancer, 2020, 126: 3847-3856.
[42] Watanabe Y, Takakura K, Kurotani R, et al. Optical coherence tomography imaging for analysis of follicular development in ovarian tissue[J]. Appl Opt, 2015, 54(19): 6111-6115.
[43] Takae S, Tsukada K, Sato Y, et al. Accuracy and safety verification of ovarian reserve assessment technique for ovarian tissue transplantation using optical coherence tomography in mice ovary[J]. Sci Rep, 2017, 7: 43550.
[44] Takae S, Tsukada K, Maeda I, et al. Preliminary human application of optical coherence tomography for quantification and localization of primordial follicles aimed at effective ovarian tissue transplantation[J]. J Assist Reprod Genet, 2018, 35(4): 627-636.
[45] Amaral M M, Sun A X, Li Y L, et al. Three-dimensional imaging and quantification of mouse ovarian follicles via optical coherence tomography[J]. Biomed Opt Express, 2023, 14(7): 3213-3224.
[46] Roth Z. Effect of heat stress on reproduction in dairy cows: insights into the cellular and molecular responses of the oocyte[J]. Annu Rev Anim Biosci, 2017, 5: 151-170.
[47] Liebenthron J, Montag M, Reinsberg J, et al. Overnight ovarian tissue transportation for centralized cryobanking: a feasible option[J]. Reprod Biomed Online, 2019, 38(5): 740-749.
[48] Cheng J J, Ruan X Y, Zhou Q, et al. Long-time low-temperature transportation of human ovarian tissue before cryopreservation[J]. Reprod Biomed Online, 2021, 43(2): 172-183.
[49] Isachenko V, Morgenstern B, Todorov P, et al. Long-term (24 h) cooling of ovarian fragments in the presence of permeable cryoprotectants prior to freezing: two unsuccesful IVF-cycles and spontaneous pregnancy with baby born after re-transplantation[J]. Cryobiology, 2020, 93: 115-120.
[50] Vilela J D M V, Dolmans M M, Amorim C A. Ovarian tissue transportation: a systematic review[J]. Reprod Biomed Online, 2021, 42(2): 351-365.
[51] Pors S E, Kristensen S G, Nikiforov D, et al. Histidine buffered media maintains pH stabile during cooled transportation of human ovarian tissue[J]. J Ovarian Res, 2021, 14(1): 116.
[52] 首都医科大学附属北京妇产医院, 中国人体健康科技促进会生育力保护与保存专业委员会, 阮祥燕. 卵巢组织冻存移植技术规范团体标准[J]. 中国全科医学, 2023, 26(23): 2836-2841.
[53] Lotz L, Bender-Liebenthron J, Dittrich R, et al. Determinants of transplantation success with cryopreserved ovarian tissue: data from 196 women of the FertiPROTEKT network[J]. Hum Reprod, 2022, 37(12): 2787-2796.
[54] Canosa S, Maggiulli R, Cimadomo D, et al. Cryostorage management of reproductive cells and tissues in ART: status, needs, opportunities and potential new challenges[J]. Reprod Biomed Online, 2023, 47(3): 103252.
[55] Pomeroy K O, Reed M L, LoManto B, et al. Cryostorage tank failures: temperature and volume loss over time after induced failure by removal of insulative vacuum[J]. J Assist Reprod Genet, 2019, 36(11): 2271-2278.
[56] Practice Committees of the American Society for Reproductive Medicine, Society for reproductive biologists and technologists, Society for Assisted Reproductive Technology. Cryostorage of reproductive tissues in the in vitro fertilization laboratory: a committee opinion[J]. Fertil Steril, 2020, 114(3): 486-491.
[57] Dolmans M M, von Wolff M, Poirot C, et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: a review of five leading European centers[J]. Fertil Steril, 2021, 115(5): 1102-1115.
[58] Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis[J]. Reprod Sci, 2017, 24(8): 1111-1120.
[59] Rodriguez-Wallberg K A, Milenkovic M, Papaikonomou K, et al. Successful pregnancies after transplantation of ovarian tissue retrieved and cryopreserved at time of childhood acute lymphoblastic leukemia—a case report[J]. Haematologica, 2021, 106(10): 2783-2787.
[60] Poirot C, Fortin A, Dhédin N, et al. Post-transplant outcome of ovarian tissue cryopreserved after chemotherapy in hematologic malignancies[J]. Haematologica, 2019, 104(8): e360-e363.
[61] Wikander I, Lundberg F E, Nilsson H, et al. A prospective study on fertility preservation in prepubertal and adolescent girls undergoing hematological stem cell transplantation[J]. Front Oncol, 2021, 11: 692834.
[62] Kristensen S G, Wakimoto Y, Colmorn L B, et al. Use of cryopreserved ovarian tissue in the Danish fertility preservation cohort[J]. Fertil Steril, 2021, 116(4): 1098-1106.
[63] Grubliauskaite M, Van der P M E M, Bos A M E, et al. Minimal infiltrative disease identification in cryopreserved ovarian tissue of girls with cancer for future use: a systematic review[J]. Cancers, 2023, 15(17): 4199.
[64] Zver T, Frontczak S, Poirot C, et al. Minimal residual disease detection by multicolor flow cytometry in cryopreserved ovarian tissue from leukemia patients[J]. J Ovarian Res, 2022, 15(1): 9.
|