[1] Bellomo R, Kellum J A, Ronco C. Acute kidney injury[J]. Lancet, 2012, 380(9843):756-766. [2] Siew E D, Davenport A. The growth of acute kidney injury: a rising tide or just closer attention to detail?[J]. Kidney Int, 2015, 87(1):46-61. [3] Hoste E A J, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis[J]. Crit Care, 2006, 10(3):R73. [4] 王俊琳, 严玉澄. 老年人急性肾损伤的特点及研究进展[J]. 中国中西医结合肾病杂志, 2012, 13(3):272-275. [5] 陆任华, 方燕, 高嘉元, 等. 住院患者急性肾损伤发病情况及危险因素分析[J]. 中国危重病急救医学, 2011, 23(7):413-417. [6] Kellum J A, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1)[J]. Crit Care, 2013, 17(1):204. [7] Ahmed A, Vairavan S, Akhoundi A, et al. Development and validation of electronic surveillance tool for acute kidney injury: a retrospective analysis[J]. J Crit Care, 2015, 30(5):988-993. [8] Pickkers P, Ostermann M, Joannidis M, et al. The intensive care medicine agenda on acute kidney injury[J]. Intensive Care Med, 2017, 43(9):1198-1209. [9] Kristovic D, Horvatic I, Husedzinovic I, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models[J]. Interact Cardiovasc Thorac Surg, 2015, 21(3):366-373. [10] Lee H C, Yoon S B, Yang S M, et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model[J]. J Clin Med, 2018, 7(11):428. [11] Kate R J, Perez R M, Mazumdar D, et al. Prediction and detection models for acute kidney injury in hospitalized older adults[J]. BMC Med Inform Decis Mak, 2016, 16:39. [12] Flechet M, Güiza F, Schetz M, et al. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin[J]. Intensive Care Med, 2017, 43(6):764-773. [13] Mohamadlou H, Lynn-Palevsky A, Barton C, et al. Prediction of acute kidney injury with a machine learning algorithm using electronic health record data[J]. Can J Kidney Health Dis, 2018, 5: 2054358118776326. [14] Sanchez-Pinto L N, Khemani R G. Development of a prediction model of early acute kidney injury in critically ill children using electronic health record data[J]. Pediatr Crit Care Med, 2016, 17(6):508-515. [15] Zimmerman L P, Reyfman P A, Smith A D R, et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements[J]. BMC Med Inform Decis Mak, 2019, 19(1):16. [16] Sun M X, Baron J, Dighe A, et al. Early prediction of acute kidney injury in critical care setting using clinical notes and structured multivariate physiological measurements[J]. Stud Health Technol Inform, 2019, 264:368-372. [17] Li Y K, Yao L, Mao C S, et al. Early prediction of acute kidney injury in critical care setting using clinical notes[J]. Proceedings (IEEE Int Conf Bioinformatics Biomed), 2018, 2018:683-686. [18] Chiofolo C, Chbat N, Ghosh E, et al. Automated continuous acute kidney injury prediction and surveillance: a random forest model[J]. Mayo Clin Proc, 2019, 94(5):783-792. [19] Kiers H D, van den Boogaard M, Schoenmakers M C J, et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury[J]. Nephrol Dial Transplant, 2013, 28(2):345-351. [20] Lee H C, Yoon H K, Nam K, et al. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery[J]. J Clin Med, 2018, 7(10):322. [21] Callejas R, Panadero A, Vives M, et al. Preoperative predictive model for acute kidney injury after elective cardiac surgery: a prospective multicenter cohort study[J]. Minerva Anestesiol, 2019, 85(1):34-44. [22] Huen S C, Parikh C R. Predicting acute kidney injury after cardiac surgery: a systematic review[J]. Ann Thorac Surg, 2012, 93(1):337-347. [23] Mizota T, Yamamoto Y, Hamada M, et al. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery[J]. Br J Anaesth, 2017, 119(6):1127-1134. [24] Wilson T, Quan S, Cheema K, et al. Risk prediction models for acute kidney injury following major noncardiac surgery: systematic review[J]. Nephrol Dial Transplant, 2016, 31(2):231-240. [25] Caragata R, Wyssusek K H, Kruger P. Acute kidney injury following liver transplantation: a systematic review of published predictive models[J]. Anaesth Intensive Care, 2016, 44(2):251-261. [26] Lin K Y, Zheng W P, Bei W J, et al. A novel risk score model for prediction of contrast-induced nephropathy after emergent percutaneous coronary intervention[J]. Int J Cardiol, 2017, 230:402-412. [27] Yin W J, Yi Y H, Guan X F, et al. Preprocedural prediction model for Contrast-Induced nephropathy patients[J]. J Am Heart Assoc, 2017, 6(2):e004498. [28] Silver S A, Shah P M, Chertow G M, et al. Risk prediction models for contrast induced nephropathy: systematic review[J]. BMJ, 2015, 351:26316642. [29] Zhou Y H, Fan W F, Dong J J, et al. Establishment of a model to predict the prognosis of pregnancy-related acute kidney injury[J]. Minerva Urol Nefrol, 2018, 70(4):437-443. [30] Johnson A E, Pollard T J, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Sci Data, 2016, 3:160035. [31] MIT Critical Data. Secondary analysis of electronic health records[M]. Cham: Springer, 2016. [32] Tomaev N, Glorot X, Rae J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767):116-119. [33] Kate R J, Perez R M, Mazumdar D, et al. Prediction and detection models for acute kidney injury in hospitalized older adults[J]. BMC Med Inform Decis Mak, 2016, 16:39. [34] Ataei N, Ameli S, Yousefifard M, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C in early detection of pediatric acute kidney injury; a diagnostic accuracy study[J]. Emerg (Tehran), 2018, 6(1):e2. [35] 唐咨林. 基于电子病历时态数据的住院病人急性肾损伤风险预测[D]. 广州: 暨南大学, 2018. [36] Ke G L, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//von Luxburg U, Guyon I, Bengio S,et al.Proceedings of the 31st International Conference on Neural Information Processing Systems. NY USA: Curran Associates Inc, 2017: 3149-3157. [37] 张渊, 冯聪, 李开源, 等. ICU患者急性肾损伤发生风险的LightGBM预测模型[J]. 解放军医学院学报, 2019, 40(4):316-320. [38] 蔺轲, 谢俊卿, 胡永华, 等. 支持向量机在ICU急性肾损伤患者住院死亡风险预测中的应用[J]. 北京大学学报:医学版, 2018, 50(2):239-244. [39] 曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2014. |