[1] GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study[J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[2] 邓宇轩, 叶雯青, 孙艳婷,等. 中国糖尿病视网膜病变患病率的荟萃分析[J]. 中华医学杂志, 2020, 100(48): 3846-3852.
[3] Flaxel C J, Adelman R A, Bailey S T, et al. Diabetic retinopathy preferred practice pattern[J]. Ophthalmology, 2020, 127(1): 66-145.
[4] 中华医学会糖尿病学分会视网膜病变学组. 糖尿病相关眼病防治多学科中国专家共识: 2021年版[J]. 中华糖尿病杂志, 2021, 13(11): 1026-1042.
[5] Garay R P, Hannaert P, Chiavaroli C. Calcium dobesilate in the treatment of diabetic retinopathy[J]. Treat Endocrinol, 2005, 4(4): 221-232.
[6] Ashraf H, Lotfi M, Akbari M, et al. Effect of calcium dobesilate on retrobulbar blood flow and choroidal thickness in patients with non-proliferative diabetic retinopathy[J]. Int Ophthalmol, 2021, 41(10): 3479-3486.
[7] Wang D X, Wang H, Wu S, et al. Intravitreal ranibizumab alone or in combination with calcium dobesilate for the treatment of diabetic macular edema in nonproliferative diabetic retinopathy patients: 12-month outcomes of a retrospective study[J]. Int J Clin Pract, 2022, 2022: 6725225.
[8] Haritoglou C, Gerss J, Sauerland C, et al. Effect of calcium dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial[J]. Lancet, 2009, 373(9672): 1364-1371.
[9] Feghhi M, Farrahi F, Abbaspour M, et al. Effect of adding oral calcium dobesilate to laser photocoagulation on the macular thickness in patients with diabetic macular edema: a randomized clinical trial[J]. Adv Pharm Bull, 2014, 4(4): 375-378.
[10] Larsen H W, Sander E, Hoppe R. The value of calcium dobesilate in the treatment of diabetic retinopathy. A controlled clinical trial[J]. Diabetologia, 1977, 13(2): 105-109.
[11] Tsuiki E, Suzuma K, Matsumoto M, et al. Oral kallidinogenase improved visual acuity and maintained chorioretinal blood flow levels after treatment for diabetic macular edema[J]. Clin Ophthalmol, 2018, 12: 1845-1852.
[12] Cheng Y, Yu X C, Zhang J, et al. Pancreatic kallikrein protects against diabetic retinopathy in KK Cg-Ay/J and high-fat diet/streptozotocin-induced mouse models of type 2 diabetes[J]. Diabetologia, 2019, 62(6): 1074-1086.
[13] Kim N H, Choi J, Kim Y H, et al. Addition of fenofibrate to statins is associated with risk reduction of diabetic retinopathy progression in patients with type 2 diabetes and metabolic syndrome: a propensity-matched cohort study[J]. Diabetes Metab, 2023, 49(3): 101428.
[14] Roy S, Kim D, Hernández C, et al. Beneficial effects of fenofibric acid on overexpression of extracellular matrix components, COX-2, and impairment of endothelial permeability associated with diabetic retinopathy[J]. Exp Eye Res, 2015, 140: 124-129.
[15] Busik J V, Tikhonenko M, Bhatwadekar A, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock[J]. J Exp Med, 2009, 206(13): 2897-2906.
[16] Bonora B M, Albiero M, Morieri M L, et al. Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial[J]. Diabetologia, 2021, 64(10): 2334-2344.
[17] Hussain R M, Shaukat B A, Ciulla L M, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration[J]. Drug Des Devel Ther, 2021, 15: 2653-2665.
[18] Harper S J, Bates D O. VEGF-A splicing: the key to anti-angiogenic therapeutics?[J]. Nat Rev Cancer, 2008, 8(11): 880-887.
[19] 蒋萌, 张明. 抗VEGF药物玻璃体内注射诱发感染性眼内炎的研究现状[J]. 眼科新进展, 2023, 43(7): 580-584.
[20] Benest A V, Kruse K, Savant S, et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage[J]. PLoS One, 2013, 8(8): e70459.
[21] Sahni J, Patel S S, Dugel P U, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with faricimab in diabetic macular edema: BOULEV ARD phase 2 randomized trial[J]. Ophthalmology, 2019, 126(8): 1155-1170.
[22] Wykoff C C, Abreu F, Adamis A P, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and Rhine): two randomised, double-masked, phase 3 trials[J]. Lancet, 2022, 399(10326): 741-755.
[23] Chandrasekaran P R, Madanagopalan V G. KSI-301: antibody biopolymer conjugate in retinal disorders[J]. Ther Adv Ophthalmol, 2021, 13: 25158414211027708.
[24] Stern H D, Hussain R M. KSI-301: an investigational anti-VEGF biopolymer conjugate for retinal diseases[J]. Expert Opin Investig Drugs, 2022, 31(5): 443-449.
[25] Zheng D Q, Li N, Hou R, et al. Glucagon-like peptide-1 receptor agonists and diabetic retinopathy: nationwide cohort and Mendelian randomization studies[J]. BMC Med, 2023, 21(1): 40.
[26] Wei L F, Mo W W, Lan S S, et al. GLP-1 RA improves diabetic retinopathy by protecting the blood-retinal barrier through GLP-1R-ROCK-p-MLC signaling pathway[J]. J Diabetes Res, 2022, 2022: 1861940.
[27] Husain M, Birkenfeld A L, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2019, 381(9): 841-851.
[28] Wang F Y, Mao Y J, Wang H, et al. Semaglutide and diabetic retinopathy risk in patients with type 2 diabetes mellitus: a Meta-analysis of randomized controlled trials[J]. Clin Drug Investig, 2022, 42(1): 17-28.
[29] Vilsbøll T, Bain S C, Leiter L A, et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy[J]. Diabetes Obes Metab, 2018, 20(4): 889-897.
[30] Smits M M, Van R D H.Safety of semaglutide[J]. Front Endocrinol: Lausanne, 2021: 645563.
[31] Lin T Y, Kang E Y C, Shao S C, et al. Risk of diabetic retinopathy between sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists[J]. Diabetes Metab J, 2023, 47(3): 394-404.
[32] Chen Y Y, Wu T T, Ho C Y, et al. Blocking of SGLT2 to eliminate NADPH-induced oxidative stress in lenses of animals with fructose-induced diabetes mellitus[J]. Int J Mol Sci, 2022, 23(13): 7142.
[33] Hanaguri J Y, Yokota H, Kushiyama A, et al. The effect of sodium-dependent glucose cotransporter 2 inhibitor tofogliflozin on neurovascular coupling in the retina in type 2 diabetic mice[J]. Int J Mol Sci, 2022, 23(3): 1362.
[34] Wilkinson-Berka J L, Suphapimol V, Jerome J R, et al. Angiotensin II and aldosterone in retinal vasculopathy and inflammation[J]. Exp Eye Res, 2019, 187: 107766.
[35] Rossing P, Garweg J G, Anker S D, et al. Effect of finerenone on the occurrence of vision-threatening complications in patients with non-proliferative diabetic retinopathy: pooled analysis of two studies using routine ophthalmological examinations from clinical trial participants (ReFineDR/DeFineDR)[J]. Diabetes Obes Metab, 2023, 25(3): 894-898.
[36] Jerome J R, Deliyanti D, Suphapimol V, et al. Finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces vascular injury and increases regulatory T-cells: studies in rodents with diabetic and neovascular retinopathy[J]. Int J Mol Sci, 2023, 24(3): 2334.
[37] Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis[J]. Redox Biol, 2019, 20: 247-260.
[38] Hammes H P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond[J]. Diabetologia, 2018, 61(1): 29-38.
[39] Pramanik S, Banerjee K, Mondal L K. The amelioration of detrimental biochemical anomalies by supplementing B, C, and E vitamins in subjects with type 2 diabetes mellitus may reduce the rate of development of diabetic retinopathy[J]. J Diabetes Res, 2022, 2022: 3886710.
[40] Appukuttan B, Ma Y F, Stempel A, et al. Effect of NADPH oxidase 1 and 4 blockade in activated human retinal endothelial cells[J]. Clin Exp Ophthalmol, 2018, 46(6): 652-660.
[41] Jiao W Z, Ji J F, Li F J, et al. Activation of the notch-Nox4-reactive oxygen species signaling pathway induces cell death in high glucose-treated human retinal endothelial cells[J]. Mol Med Rep, 2019, 19(1): 667-677.
[42] Deliyanti D, Alrashdi S F, Touyz R M, et al. Nox (NADPH oxidase) 1, Nox4, and Nox5 promote vascular permeability and neovascularization in retinopathy[J]. Hypertension, 2020, 75(4): 1091-1101.
[43] Zhou P, Xie W J, Meng X B, et al. Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy[J]. Cells, 2019, 8(3): 213.
[44] Ai X P, Yu P L, Luo L L, et al. Berberis dictyophylla F: inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway[J]. J Ethnopharmacol, 2022, 296: 115453.
[45] 刘芮诚, 孔玲, 孙野, 等. 黄芪干预糖尿病视网膜病变的有效成分及其作用机制研究进展[J]. 中国药房, 2023, 34(11): 1404-1408.
[46] Jin Q, Hao X F, Xie L K, et al. A network pharmacology to explore the mechanism of astragalus membranaceus in the treatment of diabetic retinopathy[J]. Evid Based Complement Alternat Med, 2020, 2020: 8878569.
[47] Simonson M, Li Y L, Zhu B Q, et al. Multidimensional sleep health and diabetic retinopathy: systematic review and Meta-analysis[J]. Sleep Med Rev, 2024, 74: 101891.
[48] Tu Y, Zhu M, Wang Z, et al. Melatonin inhibits Muller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy[J]. J Cell Physiol, 2020, 235(11): 8724-8735.
[49] Tang L, Zhang C Y, Yang Q, et al. Melatonin maintains inner blood-retinal barrier via inhibition of p38/TXNIP/NF-κB pathway in diabetic retinopathy[J]. J Cell Physiol, 2021, 236(8): 5848-5864.
|