[1] Zhao J, Wang R F, Song L Y, et al. Causal association between lipid-lowering drugs and female reproductive endocrine diseases: a drug-targeted Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2023, 14: 1295412.
[2] Wouk N, Helton M. Abnormal uterine bleeding in premenopausal women[J]. Am Fam Physician, 2019, 99(7): 435-443.
[3] Azziz R, Carmina E, Chen Z J, et al. Polycystic ovary syndrome[J]. Nat Rev Dis Primers, 2016, 2: 16057.
[4] Du L, Xu B, Huang C, et al. Menopausal symptoms and perimenopausal healthcare-seeking behavior in women aged 40-60 years: a community-based cross-sectional survey in Shanghai, China[J]. Int J Environ Res Public Health, 2020, 17(8): 2640.
[5] Chon S J, Umair Z, Yoon M S. Premature ovarian insufficiency: past, present, and future[J]. Front Cell Dev Biol, 2021, 9: 672890.
[6] Cowan S, Lim S, Alycia C, et al. Lifestyle management in polycystic ovary syndrome-beyond diet and physical activity[J]. BMC Endocr Disord, 2023, 23(1): 14.
[7] 鄢海蓝, 史精华, 冷金花. 人工智能在子宫内膜异位症诊断中的研究进展[J]. 中华妇产科杂志, 2023, 58(6): 469-473.
[8] 陈敏欣, 郜意, 康玉, 等. 人工智能在妇科恶性肿瘤领域应用的研究进展[J]. 中华妇产科杂志, 2022, 57(1): 72-78.
[9] Tiwari S, Kane L, Koundal D, et al. SPOSDS: a smart polycystic ovary syndrome diagnostic system using machine learning[J]. Expert Syst Appl, 2022, 203: 117592.
[10] Farrington G C.ENIAC: the birth of the information age[J]. Popular Science: the What's New Magazine, 1996, 248(3): 76.
[11] 明斯基, 郑海燕. 人能思考, 计算机为什么不能?[J]. 国外社会科学, 1984(12): 18-20, 11.
[12] 李新晖. 人工智能中的推理方法[J]. 计算机与现代化, 2001(2): 55-62.
[13] Das S, Dey A, Pal A, et al.Applications of artificial intelligence in machine learning: review and prospect[J]. Int J Comput Appl, 2015, 115(9): 31-41.
[14] Bishop C M. Pattern recognition and machine learning[M]. New York: Springer, 2006.
[15] Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3): 685-695.
[16] Kamilaris A, Prenafeta-Boldú F X. Deep learning in agriculture: a survey[J]. Comput Electron Agric, 2018, 147: 70-90.
[17] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90.
[18] Avanzo M, Wei L S, Stancanello J, et al. Machine and deep learning methods for radiomics[J]. Med Phys, 2020, 47(5): e185-e202.
[19] Tran K A, Kondrashova O, Bradley A, et al. Deep learning in cancer diagnosis, prognosis and treatment selection[J]. Genome Med, 2021, 13(1): 152.
[20] Guo Y M, Liu Y, Oerlemans A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48.
[21] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[22] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training[DB/OL]. [2024-02-20]. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
[23] Gordijn B, Have H T. ChatGPT: evolution or revolution?[J]. Med Health Care Philos, 2023, 26(1): 1-2.
[24] Marr B. Revolutionizing healthcare the top 14 uses of ChatGPT in medicine and wellness[EB/OL]. (2023-03-15)[2024-03-18]. https://bernardmarr.com/revolutionizing-healthcare-the-top-14-uses-of-chatgpt-in-medicine-and-wellness/.
[25] Mokmin N A M, Ibrahim N A. The evaluation of chatbot as a tool for health literacy education among undergraduate students[J]. Educ Inf Technol (Dordr), 2021, 26(5): 6033-6049.
[26] Fraser I S, Critchley H O, Broder M, et al. The FIGO recommendations on terminologies and definitions for normal and abnormal uterine bleeding[J]. Semin Reprod Med, 2011, 29(5): 383-390.
[27] Munro M G, Critchley H O, Fraser I S, et al. The FIGO classification of causes of abnormal uterine bleeding in the reproductive years[J]. Fertil Steril, 2011, 95(7): 2204-2208, 2208. e1-e3.
[28] Makris G M, Pouliakis A, Siristatidis C, et al. Image analysis and multi-layer perceptron artificial neural networks for the discrimination between benign and malignant endometrial lesions[J]. Diagn Cytopathol, 2017, 45(3): 202-211.
[29] Farzaneh F, Jafari Ashtiani A, Hashemi M, et al. Endometrial cancer in women with abnormal uterine bleeding: data mining classification methods[J]. Caspian J Intern Med, 2023, 14(3): 526-533.
[30] Zhang J W, Yang C, Gong C M, et al. Magnetic resonance imaging parameter-based machine learning for prognosis prediction of high-intensity focused ultrasound ablation of uterine fibroids[J]. Int J Hyperthermia, 2022, 39(1): 835-846.
[31] ESHRE Guideline Group on RPL, Bender Atik R, Christiansen O B, et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022[J]. Hum Reprod Open, 2023, 2023(1): hoad002.
[32] Li R, Zhang Q F, Yang D Z, et al. Prevalence of polycystic ovary syndrome in women in China: a large community-based study[J]. Hum Reprod, 2013, 28(9): 2562-2569.
[33] Chitra P, Sumathi M, Srilatha K, et al.Review of artificial intelligent based algorithm for prediction of polycystic ovary syndrome (PCOS) from blood samples[C]//2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). Coimbatore, India: IEEE, 2022: 1172-1176.
[34] Ramamoorthy S, Senthil Kumar T, Mansoorroom S, et al. Enhancing intricate details of ultrasound PCOD scan images using Tailored Anisotropic Diffusion Filter (TADF)[C]//Intelligence in Big Data Technologies-Beyond the Hype: Proceedings of ICBDCC. Singapore: Springer, 2021: 43-52.
[35] Wagh P, Panjwani M, Amrutha S. Early detection of PCOD using machine learning techniques[M]//Dev A, Sharma A, Agrawal S S. Artificial Intelligence and Speech Technology. Florida: CRC Press, 2021: 9-20.
[36] Kiruthika V, Sathiya S, Ramya M M. Machine learning based ovarian detection in ultrasound images[J]. Int J Adv Mechatronic Syst, 2020, 8(2/3): 75-85.
[37] Kodipalli A, Devi S. Prediction of PCOS and mental health using fuzzy inference and SVM[J]. Front Public Health, 2021, 9: 789569.
[38] Mehrotra P, Chatterjee J, Chakraborty C, et al.Automated screening of polycystic ovary syndrome using machine learning techniques[C]//2011 Annual IEEE India Conference. Hyderabad, India: IEEE, 2011: 1-5.
[39] Kaur R, Kumar R, Gupta M. Food image-based diet recommendation framework to overcome PCOS problem in women using deep convolutional neural network[J]. Comput Electr Eng, 2022, 103: 108298.
[40] Shahmoradi L, Azadbakht L, Farzi J, et al. Nutritional management recommendation systems in polycystic ovary syndrome: a systematic review[J]. BMC Womens Health, 2024, 24(1): 234.
[41] 杨冬梓, 赵晓苗. 多囊卵巢综合征的多学科干预和长期管理[J]. 中华妇产科杂志, 2015, 50(11): 810-813.
[42] Wang M, Kartsonaki C, Guo Y, et al. Factors related to age at natural menopause in China: results from the China Kadoorie Biobank[J]. Menopause, 2021, 28(10): 1130-1142.
[43] Thurston R C, Hernandez J, Del Rio J M, et al. Support vector machines to improve physiologic hot flash measures: application to the ambulatory setting[J]. Psychophysiology, 2011, 48(7): 1015-1021.
[44] Malik M, Garg P, Malik C. Chapter 9—artificial intelligence-based prediction of health risks among women during menopause[M]//Gupta M, Hemanth D J. Artificial intelligence and machine learning for women’s health issues. New York: Academic Press, 2024: 137-150.
[45] Pergialiotis V, Pouliakis A, Parthenis C, et al. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women[J]. Public Health, 2018, 164: 1-6.
[46] Bacak H O, Leblebicioglu K, Tanacan A, et al. Computerized hybrid decision-making system for hormone replacement therapy in menopausal women[J]. Technol Health Care, 2019, 27(1): 49-59.
[47] Choueka D, Tabakin A L, Shalom D F. ChatGPT in urogynecology research: novel or not?[J]. Urogynecology (Phila), 2024: 10-1097.
[48] European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, et al. ESHRE guideline: management of women with premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5): 926-937.
[49] Giri R, Vincent AJ. Prevalence and risk factors of premature ovarian insufficiency/early menopause[J]. Semin Reprod Med, 2020, 38(4/5): 237-246.
[50] De Vos M, Devroey P, Fauser B C. Primary ovarian insufficiency[J]. Lancet, 2010, 376(9744): 911-921.
[51] Vujovic S. Aetiology of premature ovarian failure[J]. Menopause Int, 2009, 15(2): 72-75.
[52] 中国人体健康科技促进会生育力保护与保存专业委员会, 国际妇科内分泌学会中国妇科内分泌学分会, 北京妇产学会内分泌分会, 等. 卵巢组织冻存移植防治医源性早发性卵巢功能不全临床应用指南[J]. 首都医科大学学报, 2023, 44(5): 695-703.
[53] Sütcüolu B M, Güler M. Appropriateness of premature ovarian insufficiency recommendations provided by ChatGPT[J]. Menopause, 2023, 30(10): 1033-1037.
[54] Yu Z Y, Li M J, Peng W L. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning[J]. Sci Rep, 2023, 13(1): 11498.
[55] Zhang Y Y, Hou J, Wang Q Y, et al. Application of transfer learning and feature fusion algorithms to improve the identification and prediction efficiency of premature ovarian failure[J]. J Healthc Eng, 2022, 2022: 3269692.
[56] Yu L L, Qing X F. Diagnosis of idiopathic premature ovarian failure by color doppler ultrasound under the intelligent segmentation algorithm[J]. Comput Math Methods Med, 2022, 2022: 2645607.
[57] Gianfrancesco M A, Tamang S, Yazdany J, et al. Potential biases in machine learning algorithms using electronic health record data[J]. JAMA Intern Med, 2018, 178(11): 1544-1547.
[58] Chen J H, Asch S M. Machine learning and prediction in medicine-beyond the peak of inflated expectations[J]. N Engl J Med, 2017, 376(26): 2507-2509.
[59] Hopcroft K. Artificial intelligence may not recognise the nuances of general practice[J]. BMJ, 2018, 363: k5205.
[60] WHO. Ethics and governance of artificial intelligence for health[M]. Geneva, Switzerland: World Health Organization, 2021.
[61] 国家药监局. 国家药监局发布《人工智能医用软件产品分类界定指导原则》[J]. 医学信息学杂志, 2021, 42(7): 94.
|