[1] Rose-Inman H, Kuehl D. Acute leukemia[J]. Hematol Oncol Clin North Am, 2017, 31(6): 1011-1028.
[2] Hyuna S, Jacques F, Rebecca L S, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[3] 乔艳萍, 孙江涛. 探讨整体护理对白血病患者化疗心理及依从性的影响[J]. 国际护理学杂志, 2019, 38(14): 2232-2235.
[4] 彭贤贵, 杨武晨, 李佳, 等. 细胞形态相关技术在血液系统肿瘤中的应用[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[5] Swerdlow S H, Campo E, Pileri S A, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms[J]. Blood, 2016, 127(20): 2375-2390.
[6] Wang C, Wei X L, Li C X, et al. Efficient and highly accurate diagnosis of malignant hematological diseases based on Whole-Slide images using deep learning[J]. Front Oncol, 2022, 12: 879308.
[7] Satoshi N, Isamu S, Daisuke K,et al. Machine learning-aided risk stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Biomark Res, 2021, 9(1) :13.
[8] Jan K, Łukasz W, Łukasz S, et al. Machine learning based analysis of relations between antigen expression and genetic aberrations in childhood B-cell precursor acute lymphoblastic leukaemia[J]. J Clin Med, 2022, 11(9):2281.
[9] Hsiao Y J, Wen Y C, Lai W Y, et al. Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer[J]. World J Gastroenterol, 2021, 27(22): 2979-2993.
[10] Whiting P F, Rutjes A W S, Westwood M E, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536.
[11] Atteia G, Alhussan A A, Samee N A. BO-ALLCNN: Bayesian-based optimized CNN for acute lymphoblastic leukemia detection in microscopic blood smear images[J]. Sensors (Basel), 2022, 22(15): 5520.
[12] Boldú L, Merino A, Acevedo A, et al. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images[J]. Comput Methods Programs Biomed, 2021, 202: 105999.
[13] Boldú L, Merino A, Alférez S, et al. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis[J]. J Clin Pathol, 2019, 72(11): 755-761.
[14] Abd El-Ghany S, Elmogy M, El-Aziz A. Computer-aided diagnosis system for blood diseases using Efficient Net-B3 based on a dynamic learning algorithm[J]. Diagnostics (Basel), 2023, 13(3): 404.
[15] Adjouadi M, Ayala M, Cabrerizo M, et al. Classification of leukemia blood samples using neural networks[J]. Ann Biomed Eng, 2010, 38(4): 1473-1482.
[16] Anwar S, Alam A. A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction[J]. Med Biol Eng Comput, 2020, 58(12): 3113-3121.
[17] Chen Y M, Chou F I, Ho W H, et al. Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method[J]. BMC Bioinformatics, 2022, 22(Suppl 5): 615.
[18] Hamza M A, Albraikan A A, Alzahrani J S, et al. Optimal deep transfer learning-based human-centric biomedical diagnosis for acute lymphoblastic leukemia detection[J]. Comput Intell Neurosci, 2022, 2022: 7954111.
[19] Jawahar M, H S, L J A, et al. ALNett: a cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification[J]. Comput Biol Med, 2022, 148: 105894.
[20] Jiang Z C, Dong Z X, Wang L Y, et al. Method for diagnosis of acute lymphoblastic leukemia based on ViT-CNN ensemble model[J]. Comput Intell Neurosci, 2021, 2021: 7529893.
[21] Ouyang N L, Wang W J, Ma L, et al. Diagnosing acute promyelocytic leukemia by using convolutional neural network[J]. Clin Chim Acta, 2021, 512: 1-6.
[22] Qiao Y F, Zhang Y, Liu N, et al. An end-to-end pipeline for early diagnosis of acute promyelocytic leukemia based on a compact CNN model[J]. Diagnostics, 2021, 11(7): 1237.
[23] Sampathila N, Chadaga K, Goswami N, et al. Customized deep learning classifier for detection of acute lymphoblastic leukemia using blood smear images[J]. Healthcare, 2022, 10(10): 1812.
[24] Shafique S, Tehsin S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks[J]. Technol Cancer Res Treat, 2018, 17: 1533033818802789.
[25] Wang M F, Dong C X, Gao Y, et al. A deep learning model for the automatic recognition of aplastic anemia, myelodysplastic syndromes, and acute myeloid leukemia based on bone marrow smear[J]. Front Oncol, 2022, 12: 844978.
[26] Leon-Sarmiento F E, Rizzo-Sierra C V, Leon-Ariza J S, et al. A new neurometric dissection of the area-under-curve-associated jiggle of the motor evoked potential induced by transcranial magnetic stimulation[J]. Physiol Behav, 2015, 141: 111-119.
[27] Glas A S, Lijmer J G, Prins M H, et al. The diagnostic odds ratio: a single indicator of test performance[J]. J Clin Epidemiol, 2003, 56(11): 1129-1135.
[28] Hillis S L. Equivalence of binormal likelihood-ratio and bi-chi-squared ROC curve models[J]. Stat Med, 2016, 35(12): 2031-2057.
[29] Salto-Tellez M, Maxwell P, Hamilton P. Artificial intelligence-the third revolution in pathology[J]. Histopathology, 2019, 74(3): 372-376.
[30] 朱昌, 王冬燕, 华翼飞, 等. 人工智能在胃疾病中的应用及展望[J]. 胃肠病学和肝病学杂志, 2022, 31(4): 451-453.
[31] Moshavash Z, Danyali H, Helfroush M S. An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images[J]. J Digit Imaging, 2018, 31(5): 702-717.
[32] Pan L Y, Liu G J, Lin F Q, et al. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia[J]. Sci Rep. 2017, 7(1):7402.
[33] Huang F R, Guang P W, Li F C, et al. AML, ALL, and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network: a STARD compliant diagnosis research[J]. Medicine, 2020, 99(45): e23154.
[34] 杜忠华, 张福明, 吴波, 等. 人工智能技术Morphogo系统在骨髓细胞形态学检查的临床应用[J]. 中国实验诊断学, 2021, 25(7): 958-961. |