[1] 郭可信. 金相学史话(6):电子显微镜在材料科学中的应用[J]. 材料科学与工程, 2002,20(1):5-10. [2] Ruska E. Nobel Lectures, Physics 1981-1990[M]. Singapore:World Scientific Publishing,1993. [3] Marton L. Electron microscopy of biological objects[J].Nature, 1934, 133, 911-911. [4] Scientific Background on the Nobel Prize in Chemistry 2017[EB/OL]. (2017-10-05)[2017-10-13].https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/advanced.html [5] Nogales E. The development of cryo-EM into a mainstream structural biology technique[J]. Nat Methods, 2016, 13(1):24-27. [6] Kühlbrandt W. Cryo-EM enters a new era[J]. Elife, 2014, 3:e03678. [7] http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1960.tb49990.x/abstract;jsessionid=27B4652D0FF81771784BD08341B32B95.f04t04. [8] Taylor K A, Glaeser R M. Electron diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037. [9] Taylor K A, Glaeser R M. Electron microscopy of frozen hydrated biological specimens[J]. J Ultrastruct Res, 1976, 55(3):448-456. [10] Dubochet J. Cryo-EM-the first thirty years[J].J Microsc, 2012, 245(3):221-224. [11] Dubochet J, Lepault J, Freeman R, et al. Electron microscopy of frozen water and aqueous solutions[J].J Microsc, 1982, 128(3):219-237. [12] Image-Dubochet's preparation method (948 kB)[EB/OL].(2017-10-05)[2017-10-13]. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/fig_ke_en_17_dubochetspreparationmethod.pdf. [13] Sartori N, Richter K, Dubochet J. Vitrification depth can be increased more than 10 fold by high pressure freezing[J]. J Microsc, 1993, 172(1):55-61. [14] Al-Amoudi A, Chang J J, Leforestier A, et al. Cryo-electron microscopy of vitreous sections[J]. EMBO J, 2004, 23(18):3583-3588. [15] Beck M, Baumeister W. Cryo-electron tomography:can it reveal the molecular sociology of cells in atomic detail[J]. Trends Cell Biol, 2016, 26(11):825-837. [16] Oikonomou C M, Jensen G J. Cellular electron cryotomography:toward structural biology in situ[J]. Annu Rev Biochem, 2017, 86:873-896. [17] Henderson R, Unwin P N. Three-dimensional model of purple membrane obtained by electron microscopy[J]. Nature, 1975, 257(5521):28-32. [18] Henderson R, Baldwin J M, Ceska T A, et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy[J]. J Mol Biol, 1990, 213(4):899-929. [19] Grigorieff N, Harrison S C. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy[J]. Curr Opin Struct Biol, 2011, 21(2):265-273. [20] Frank J. Averaging of low exposure electron micrographs of non-periodic objects[J]. Ultramicroscopy, 1975, 1(2):159-162. [21] Frank J, Goldfarb W, Eisenberg D, et al. Reconstruction of glutamine synthetase using computer averaging[J]. Ultramicroscopy, 1978, 3(3):283-290 [22] Van Heel M, Frank J. Use of multivariates statistics in analysing the images of biological macromolecules[J]. Ultramicroscopy, 1981, 6(2):187-194. [23] Frank J, Van Heel M. Correspondence analysis of aligned images of biological particles[J]. J Mol Biol, 1982, 161(1):134-137. [24] Radermacher M, Wagenknecht T, Verschoor A, et al. A new 3-D reconstruction scheme applied to the 50s ribosomal subunit of E. coli[J]. J Microsc, 1986, 141(Pt 1):RP1-2. [25] Radermacher M, Wagenknecht T, Verschoor A, et al. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli[J]. J Microsc, 1987, 146(Pt 2):113-136. [26] Image-Frank's image analysis (pdf 1 MB)[EB/OL]. (2017-10-05)[2017-10-13]. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/fig_ke_en_17_franksimageanalysis.pdf. [27] Frank J, Shimkin B, Dowse H. Spider-A modular software system for electron image processing[J]. Ultramicroscopy, 1981, 6(1):343-357. [28] Bammes BE, Rochat R H, Jakana J, et al. Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency[J]. J Struct Biol, 2012, 177(3):589-601. [29] Meyerson J R, Chittori S, Merk A, et al. Structural basis of kainate subtype glutamate receptor desensitization[J]. Nat, 2016, 537(7621):567-571. [30] Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM[J]. Nat Methods, 2013, 10(6):584-590. [31] Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478):107-112. [32] Lu P, Bai X C, Ma D, et al.Three-dimensional structure of human γ-secretase[J]. Nature, 2014, 512(7513):166-170. [33] Yan C, Hang J, Wan R, et al. Structure of a yeast spliceosome at 3.6-angstrom resolution[J]. Science, 2015, 349(6253):1182-1191. [34] Hang J, Wan R, Yan C, et al. Structural basis of pre-mRNA splicing[J]. Science, 2015, 349(6253):1191-1198. [35] Wu M, Gu J, Huang Y, et al. Structure of mammalian respiratory supercomplex I1Ⅲ2IV1[J]. Cell, 2016, 167(6):1598-1609. [36] Guo R, Zong S, Wu M, et al. Architecture of human mitochondrial respiratory megacomplex I2Ⅲ2IV2[J]. Cell, 2017, 170(6):1247-1257. [37] Beck M, Baumeister W. Cryo-electron tomography:can it reveal the molecular sociology of cells in atomic detail[J]. Trends Cell Biol, 2016, 26(11):825-837. [38] Oikonomou C M, Jensen G J. Cellular electron cryotomography:toward structural biology in situ[J]. Annu Rev Biochem, 2017, 86:873-896. [39] Rubinstein J L. Cryo-EM captures the dynamics of ion channel opening[J]. Cell, 2017, 168(3):341-343. [40] Hite R K, Mackinnon R. Structural titration of Slo2.2, a Na+ -dependent K+ channel[J]. Cell, 2017, 168(3):390-399. |