[1] GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5):439-458. [2] Wu S, Wu B, Liu M, et al. China Stroke Study Collaboration. Stroke in China:Advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4):394-405. [3] Nudo R J. Mechanisms for recovery of motor function following cortical damage[J]. Curr Opin Neurobiol, 2006, 16(6):638-644. [4] Cramer S C. Repairing the human brain after stroke:mechanisms of spontaneous recovery[J]. Ann Neurol, 2008, 63(3):272-287. [5] Zilles K, Amunts K. Individual variability is not noise[J]. Trends Cogn Sci, 2013, 17(4):153-155. [6] Mueller S, Wang D, Fox M D, et al. Individual variability in functional connectivity architecture of the human brain[J]. Neuron, 2013,77(3):586-595. [7] Li M, Wang D, Ren J, et al. Performing group-level functional image analyses based on homologous functional regions mapped in individuals[J]. PLoS Biol, 2019, 17(3):e2007032. [8] Schmahmann J D, Ko R, MacMore J. The human basis pontis:motor syndromes and topographic organization[J]. Brain, 2004, 127(Pt 6):1269-1291. [9] Lu J, Liu H, Zhang M, et al. Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways[J]. J Neurosci, 2011, 31(42):15065-15071. [10] Riedl V, Bienkowska K, Strobel C, et al. Local activity determines functional connectivity in the resting human brain:a simultaneous FDG-PET/fMRI study[J]. J Neurosci. 2014, 34(18):6260-6266 [11] Shang K, Cui B, Ma J, et al. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system[J]. Eur J Radiol, 2017,93:70-75. [12] Ma Y, Gu Y, Tong X, et al. The Carotid and Middle Cerebral Artery Occlusion Surgery Study (CMOSS):a study protocol for a randomised controlled trial[J]. Trials,2016,17(1):544. [13] Cui B, Zhang T, Ma Y, et al. Simultaneous PET-MRI imaging of cerebral blood flow and glucose metabolism in the symptomatic unilateral internal carotid artery/middle cerebral artery steno-occlusive disease[J]. Eur J Nucl Med Mol Imaging, 2020, 47:1668-1677. [14] Singhal A B, Wang X, Sumii T, et al. Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion[J]. J Cereb Blood Flow Metab, 2002, 22:861-868. [15] Lu J, Dai G P, Egi Y, et al. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat[J]. Neuroimage, 2009, 45(4):1126-1134. [16] He Y, Xie F, Ye J, et al. 1-(4-[18F]Fluorobenzyl)-4-[(tetrahydrofuran-2-yl) methyl] piperazine:A novel suitable radioligand with low lipophilicity for imaging σ1 receptors in the brain[J]. J Med Chem, 2017, 60(10):4161-4172. |