[1] Vercelli A, Repici M, Garbossa D, et al. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals[J]. Brain Res Bull, 2000, 51(1): 11-28.
[2] Lanciego J L, Wouterlood F G. A half century of experimental neuroanatomical tracing[J]. J Chem Neuroanat, 2011, 42: 157-183.
[3] Qiu L Y, Zhang B, Gao Z H. Lighting up neural circuits by viral tracing[J]. Neurosci Bull, 2022, 38(11): 1383-1396.
[4] Cui J J, Zhu X L, Shi H, et al. The expression of calcitonin gene-related peptide on the neurons associated Zusanli (ST 36) in rats[J]. Chin J Integr Med, 2015, 21(8): 630-634.
[5] Zhang Z Y, Xu D S, Wang J, et al. Correlated sensory and sympathetic innervation between the acupoint BL23 and kidney in the rat[J]. Front Integr Neurosci, 2020, 14: 616778.
[6] Winnubst J, Bas E, Ferreira T A, et al. Reconstruction of 1 000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain[J]. Cell, 2019, 179(1): 268-281.e13.
[7] BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex[J]. Nature, 2021, 598(7879): 86-102.
[8] Muñoz-Castañeda R, Zingg B, Matho K S, et al. Cellular anatomy of the mouse primary motor cortex[J]. Nature, 2021, 598(7879): 159-166.
[9] Yao L L, Ye Q P, Liu Y, et al. Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei[J]. Nat Commun, 2023, 14(1): 810.
[10] Cao P, Zhang M J, Ni Z Y, et al. Green light induces antinociception via visual-somatosensory circuits[J]. Cell Rep, 2023, 42(4): 112290.
[11] Yang Y M, Huang H, Zhu M Y, et al. A neural circuit for lavender-essential-oil-induced antinociception[J]. Cell Rep, 2024, 43(10): 114800.
[12] Xu Y L, Zhu X X, Chen Y R, et al. Electroacupuncture alleviates mechanical allodynia and anxiety-like behaviors induced by chronic neuropathic pain via regulating rostral anterior cingulate cortex-dorsal raphe nucleus neural circuit[J]. CNS Neurosci Ther, 2023, 29(12): 4043-4058.
[13] Cui J J, Wang J, Xu D S, et al. Alexa fluor 488-conjugated cholera toxin subunit B optimally labels neurons 3-7 days after injection into the rat gastrocnemius muscle[J]. Neural Regen Res, 2022, 17(10): 2316-2320.
[14] Xu D S, Cui J J, Wang J, et al. Improving the application of high molecular weight biotinylated dextran amine for thalamocortical projection tracing in the rat[J]. J Vis Exp, 2018(134): 55938.
[15] Zhang W J, Xu D S, Cui J J, et al. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways[J]. Microsc Res Tech, 2017, 80(2): 260-266.
[16] Xu D S, Zou L, Zhang W X, et al. Comparison of sensory and motor innervation between the acupoints LR3 and LR8 in the rat with regional anatomy and neural tract tracing[J]. Front Integr Neurosci, 2021, 15: 728747.
[17] Wang J, Xu D S, Cui J J, et al. Visualizing the calcitonin gene-related peptide immunoreactive innervation of the rat cranial dura mater with immunofluorescence and neural tracing[J]. J Vis Exp, 2021(167): 61742.
[18] Reiner A, Veenman C L, Medina L, et al. Pathway tracing using biotinylated dextran amines[J]. J Neurosci Methods, 2000, 103(1): 23-37.
[19] Veenman C L, Reiner A, Honig M G. Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies[J]. J Neurosci Methods, 1992, 41(3): 239-254.
[20] Han X, Lv G, Wu H, et al. Biotinylated dextran amine anterograde tracing of the canine corticospinal tract[J]. Neural Regen Res, 2012, 7(11): 805-809.
[21] Liu S B, Wang Z F, Su Y S, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J]. Nature, 2021, 598(7882): 641-645.
[22] Arber S, Costa R M. Connecting neuronal circuits for movement[J]. Science, 2018, 360(6396): 1403-1404.
[23] Klaus A, Martins G J, Paixao V B, et al. The spatiotemporal organization of the striatum encodes action space[J]. Neuron, 2017, 95(5): 1171-1180.e7.
[24] Carmona L M, Thomas E T, Smith K, et al. Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations[J]. Cell Rep, 2024, 43(4): 113993.
[25] Hausmann F S, Barrett J M, Martin M E, et al. Axonal barcode analysis of pyramidal tract projections from mouse forelimb M1 and M2[J]. J Neurosci, 2022, 42(41): 7733-7743.
[26] Canty A J, Murphy M. Molecular mechanisms of axon guidance in the developing corticospinal tract[J]. Prog Neurobiol, 2008, 85(2): 214-235.
[27] Steward O, Zheng B H, Ho C, et al. The dorsolateral corticospinal tract in mice: an alternative route for corticospinal input to caudal segments following dorsal column lesions[J]. J Comp Neurol, 2004, 472(4): 463-477.
[28] Zhang Y L, Xiong Y, Mahmood A, et al. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment[J]. Brain Res, 2010, 1353: 249-257.
|