首都医科大学学报 ›› 2020, Vol. 41 ›› Issue (4): 664-670.doi: 10.3969/j.issn.1006-7795.2020.04.029
吴剑1, 谷亚坤2, 刘佳2
收稿日期:
2020-06-23
出版日期:
2020-08-21
发布日期:
2020-07-22
通讯作者:
刘佳
E-mail:liujia_19901005@163.com
基金资助:
Wu Jian1, Gu Yakun2, Liu Jia2
Received:
2020-06-23
Online:
2020-08-21
Published:
2020-07-22
Supported by:
摘要: 有氧代谢对脑组织至关重要,神经系统对缺血/缺氧的耐受性差。内源性因素如缺血性卒中、癌症及外源性因素如高原暴露、航空作业、潜水等均会导致机体或器官的缺血/缺氧,从而引起中枢神经系统的功能紊乱以及病理改变。寻找提高脑低氧耐受性的策略对于增强机体适应低氧环境的能力及防治缺血/缺氧性疾病具有重要意义。大量研究表明,预先给予机体一个短时间的较轻程度的缺血/缺氧刺激,能够显著提高机体对随后更严重缺氧的耐受能力,这种现象被称为缺血/缺氧预适应。近年来,缺血/缺氧预适应作为一种诱导神经内源性保护的策略,受到了广泛关注,成为当前生物医学领域中的研究前沿和热点之一。到目前为止,缺血/缺氧预适应已经在多种临床前模型中进行了研究,如缺血性卒中、神经退行性疾病等。缺血/缺氧预适应的保护机制复杂,涉及低氧信号通路激活、抗氧化应激、抗炎、抗凋亡等多种效应。本文就目前报道的缺血/缺氧预适应的主要机制、基础及临床研究进展进行综述,以阐明缺血/缺氧预适应的神经保护作用及应用潜力。
中图分类号:
吴剑, 谷亚坤, 刘佳. 缺血/缺氧预适应的神经保护作用研究进展[J]. 首都医科大学学报, 2020, 41(4): 664-670.
Wu Jian, Gu Yakun, Liu Jia. Research progresses in neuroprotective effects of ischemic/hypoxia preconditioning[J]. Journal of Capital Medical University, 2020, 41(4): 664-670.
[1] | Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5):1124-1136. |
[2] | Hausenloy D J and Yellon D M. Ischaemic conditioning and reperfusion injury[J]. Nat Rev Cardiol, 2016, 13(4):193-209. |
[3] | McDonough A, Weinstein J R. The role of microglia in ischemic preconditioning[J]. Glia, 2020, 68(3):455-471. |
[4] | Li C, Xu M, Wu Y, et al. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia:a randomized controlled study[J]. Anesthesiology, 2014, 121(2):249-259. |
[5] | Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection:from hypoxia to ischemia[J]. Prog Neurobiol, 2017, 157:79-91. |
[6] | Ekeloef S, Homilius M, Stilling M, et al. The effect of remote ischaemic preconditioning on myocardial injury in emergency hip fracture surgery (PIXIE trial):phase Ⅱ randomised clinical trial[J]. BMJ, 2019, 367:l6395. |
[7] | Lee P, Chandel N S, Simon M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. (2020-05-14).. https://doi:10.1038/s41580-020-0227-y. |
[8] | Zhu T, Zhan L, Liang D, et al. Hypoxia-inducible factor 1alpha mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J]. J Neuropathol Exp Neurol, 2014, 73(10):975-986. |
[9] | Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease:beyond discovery and development[J]. Cell, 2019, 176(6):1248-1264. |
[10] | Shao G, Gao C Y, Lu G W. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia[J]. Neurosignals, 2005, 14(5):255-261. |
[11] | Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. (2020-05-14).. https://doi:10.1161/CIRCRESAHA.119.316463. |
[12] | Joost H G, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators:nomenclature, sequence characteristics, and potential function of its novel members (review)[J]. Mol Membr Biol, 2001, 18(4):247-256. |
[13] | Kuhrt D, Wojchowski D M. Emerging EPO and EPO receptor regulators and signal transducers[J]. Blood, 2015, 125(23):3536-3541. |
[14] | Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:life with variable oxygen availability[J]. Annu Rev Physiol, 2007, 69:145-170. |
[15] | Stenzel-Poore M P, Stevens S L, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia:similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states[J]. Lancet, 2003, 362(9389):1028-1037. |
[16] | Divald A, Kivity S, Wang P, et al. Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits[J]. Circ Res, 2010, 106(12):1829-1838. |
[17] | Bolanos J P, Almeida A, Moncada S. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends Biochem Sci, 2010, 35(3):145-149. |
[18] | Sies H and Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol.(2020-03-30).. https://doi:10.1038/s41580-020-0230-3. |
[19] | Bell K F, Al-Mubarak B, Fowler J H, et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning[J]. Proc Natl Acad Sci U S A, 2011, 108(1):E1-2; author reply E3-4. |
[20] | Nadtochiy S M, Baker P R, Freeman B A, et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning:implications for cardioprotection[J]. Cardiovasc Res, 2009, 82(2):333-340. |
[21] | Kannurpatti S S. Mitochondrial calcium homeostasis:implications for neurovascular and neurometabolic coupling[J]. J Cereb Blood Flow Metab, 2017, 37(2):381-395. |
[22] | Sheng R, Liu X Q, Zhang L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3):310-325. |
[23] | Azad P, Ryu J, Haddad G G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia[J]. Free Radic Biol Med, 2011, 51(2):530-538. |
[24] | Shi K, Tian D C, Li Z G, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11):1058-1066. |
[25] | Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke, 2009, 40(5):1849-1857. |
[26] | Cui G H, Wu J, Mou F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668. |
[27] | Sen E, Basu A, Willing L B, et al. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties[J]. ASN Neuro, 2011, 3(3):e00062. |
[28] | Song W M, Colonna M. The identity and function of microglia in neurodegeneration[J]. Nat Immunol, 2018, 19(10):1048-1058. |
[29] | Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J]. Mol Neurobiol, 2016, 53(2):1181-1194. |
[30] | Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke[J]. Biomed Pharmacother, 2018, 105:518-525. |
[31] | Bock F J, Tait S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100. |
[32] | Miranda C, Fagundes D J, Miranda E, et al. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury[J]. Acta Cir Bras, 2019, 34(5):e201900501. |
[33] | Olloquequi J, Cornejo-Cordova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders:therapeutic implications[J]. J Psychopharmacol, 2018, 32(3):265-275. |
[34] | Magi S, Piccirillo S, Amoroso S. The dual face of glutamate:from a neurotoxin to a potential survival factor-metabolic implications in health and disease[J]. Cell Mol Life Sci, 2019, 76(8):1473-1488. |
[35] | Fullana N, Gasull-Camos J, Tarres-Gatius M, et al. Astrocyte control of glutamatergic activity:downstream effects on serotonergic function and emotional behavior[J]. Neuropharmacology, 2020, 166:107914. |
[36] | Gong J, Gong S, Zhang M, et al. Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats[J]. Amino Acids, 2014, 46(6):1537-1545. |
[37] | Stavoe A K H, Holzbaur E L F. Autophagy in Neurons[J]. Annu Rev Cell Dev Biol, 2019, 35:477-500. |
[38] | Park H K, Chu K, Jung K H, et al. Autophagy is involved in the ischemic preconditioning[J]. Neurosci Lett, 2009, 451(1):16-19. |
[39] | Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice[J]. Nature, 2006, 441(7095):880-884. |
[40] | Grotta J C. tPA for stroke:important progress in achieving faster treatment[J]. JAMA, 2014, 311(16):1615-1617. |
[41] | Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia:from experimental strategies to clinical use[J]. Lancet Neurol, 2009, 8(4):398-412. |
[42] | Emberson J, Lees K R, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958):1929-1935. |
[43] | Wang W W, Chen D Z, Zhao M, et al. Prior transient ischemic attacks may have a neuroprotective effect in patients with ischemic stroke[J]. Arch Med Sci, 2017, 13(5):1057-1061. |
[44] | Vellimana A K, Milner E, Azad T D, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke, 2011, 42:776-782. |
[45] | Chan M T, Boet R, Ng S C, et al. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion[J]. Acta Neurochir Suppl, 2005, 95:93-96. |
[46] | Sales A H A, Barz M, Bette S, et al. Impact of ischemic preconditioning on surgical treatment of brain tumors:a single-center, randomized, double-blind, controlled trial[J]. BMC Med, 2017, 15(1):137. |
[47] | Manukhina E B, Downey H F, Shi X, et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease[J]. Exp Biol Med (Maywood), 2016, 241(12):1351-1363. |
[48] | Zhang K, Zhao T, Huang X, et al. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia[J]. Neurobiol Dis, 2014, 64:66-78. |
[49] | Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity[J]. J Mol Neurosci, 2013, 49(1):105-115. |
[50] | Mazumdar J, O'Brien W T, Johnson R S, et al. O2 regulates stem cells through Wnt/beta-catenin signalling[J]. Nat Cell Biol, 2010, 12(10):1007-1013. |
[51] | Vaughn C B, Jakimovski D, Kavak K S, et al. Epidemiology and treatment of multiple sclerosis in elderly populations[J]. Nat Rev Neurol, 2019, 15(6):329-342. |
[52] | Faissner S, Plemel J R, Gold R, et al. Progressive multiple sclerosis:from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18(12):905-922. |
[53] | Van Kaer L, Postoak J L, Wang C, et al. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE[J]. Cell Mol Immunol, 2019, 16(6):531-539. |
[54] | Esen N, Katyshev V, Serkin Z, et al. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE[J]. J Neuroinflammation, 2016, 13:13. |
[55] | Halder S K, Kant R, and Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels[J]. Acta Neuropathol Commun, 2018, 6(1):86. |
[56] | Prosser-Loose E J, Hassan A, Mitchell G S, et al. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury[J]. J Neurotrauma, 2015, 32(18):1403-1412. |
[57] | Wei L, Fraser J L, Lu Z Y, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats[J]. Neurobiol Dis, 2012, 46(3):635-645. |
[58] | Oh J S, Ha Y, An S S, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J]. Neurosci Lett, 2010, 472(3):215-219. |
[1] | 徐建可, 刘宁, 韩苗, 张洪阳, 韩新生. 缺血性脑卒中患者颈动脉斑块性质与非高密度脂蛋白胆固醇浓度的相关性[J]. 首都医科大学学报, 2023, 44(1): 49-53. |
[2] | 秦琳慧, 李宁, 杨宇, 杨勇, 任长虹. 肢体远隔缺血期适应联合后适应促进大鼠缺血性脑卒中模型神经发生的作用及机制[J]. 首都医科大学学报, 2023, 44(1): 54-61. |
[3] | 李雪, 范俊芬, 王荣亮, 马青峰, 罗玉敏, 赵海苹. HDAC2对急性缺血性卒中患者中性粒细胞TBC蛋白家族成员的表观调控[J]. 首都医科大学学报, 2023, 44(1): 62-71. |
[4] | 姜富城, 黄菊梅, 冯跃先, 钟红亮, 贾建文, 杨洪超, 刘赫, 刘扬. 清醒镇静在急性缺血性脑卒中血管内治疗中的应用效果及预后影响评估[J]. 首都医科大学学报, 2023, 44(1): 72-77. |
[5] | 李森, 郭学文, 赵鑫, 黄安琪, 林婧格, 李兴茂, 李秀, 杜怡峰, 赵咏梅, 白洁, 夏章勇. 急性缺血性脑卒中合并糖尿病人群的血糖变异性与神经功能恶化的相关性分析[J]. 首都医科大学学报, 2023, 44(1): 78-84. |
[6] | 谷强, 余孝君, 张津. 高龄与中低龄老年轻型缺血性脑卒中临床特点及预后分析[J]. 首都医科大学学报, 2022, 43(3): 474-479. |
[7] | 王向东, 姜敏, 王鑫, 巩永凤. 糖皮质激素受体在缺血再灌注肾损伤中的作用[J]. 首都医科大学学报, 2022, 43(2): 260-268. |
[8] | 赵文博, 任长虹, 李思颉, 马红蕊, 吉训明. 低氧与缺血适应防治缺血性脑卒中新技术体系的创研及推广应用——2020年度国家科学技术进步奖二等奖[J]. 首都医科大学学报, 2022, 43(1): 1-5. |
[9] | 李珺, 李硕硕, 彭志鑫, 廖亚金, 程金波, 袁增强. 小胶质细胞组蛋白去乙酰化酶3在低压低氧诱导的氧化应激中的作用[J]. 首都医科大学学报, 2022, 43(1): 91-98. |
[10] | 张丽, 王明洋, 牛红妹, 张兰, 李林. 淫羊藿黄酮对慢性脑缺血低灌注致大鼠脑白质病变的影响[J]. 首都医科大学学报, 2021, 42(5): 768-775. |
[11] | 房亚兰, 杨楠, 赵咏梅, 黄语悠, 李锦程, 段云霞, 高利, 罗玉敏. 大黄酚对局灶性脑缺血再灌注小鼠缺血半暗带区HIF-1α与VEGF表达的影响[J]. 首都医科大学学报, 2021, 42(2): 219-224. |
[12] | 杨楠, 丁锚, 闫峰, 师文娟, 黄语悠, 赵咏梅. 远隔缺血预适应对脑缺血再灌注损伤大鼠缺血半暗带区PERK/p-eIF2α通路及自噬的影响[J]. 首都医科大学学报, 2021, 42(2): 225-231. |
[13] | 丁锚, 杨楠, 黄语悠, 师文娟, 闫峰, 赵咏梅, 刘克建. 线粒体活性氧自由基抑制剂R(+)-普拉克索对脑缺血再灌注损伤大鼠JAK2-STAT3通路及炎性因子TNF-α的影响[J]. 首都医科大学学报, 2021, 42(2): 232-238. |
[14] | 王雨晴, 陈志刚, 李芳芳, 张斯佳, 罗玉敏, 赵海苹. 蛋白激酶Pbk在缺氧神经胶质细胞中的变化及与IGF-1的相关性[J]. 首都医科大学学报, 2021, 42(2): 251-256. |
[15] | 谷珊珊, 卢洁, 陈刚. 心肌灌注显像半定量分析对不同缺血程度老年冠状动脉粥样硬化性心脏病的诊断价值[J]. 首都医科大学学报, 2021, 42(1): 26-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||