首都医科大学学报 ›› 2020, Vol. 41 ›› Issue (4): 664-670.doi: 10.3969/j.issn.1006-7795.2020.04.029
吴剑1, 谷亚坤2, 刘佳2
收稿日期:2020-06-23
出版日期:2020-08-21
发布日期:2020-07-22
通讯作者:
刘佳
E-mail:liujia_19901005@163.com
基金资助:Wu Jian1, Gu Yakun2, Liu Jia2
Received:2020-06-23
Online:2020-08-21
Published:2020-07-22
Supported by:摘要: 有氧代谢对脑组织至关重要,神经系统对缺血/缺氧的耐受性差。内源性因素如缺血性卒中、癌症及外源性因素如高原暴露、航空作业、潜水等均会导致机体或器官的缺血/缺氧,从而引起中枢神经系统的功能紊乱以及病理改变。寻找提高脑低氧耐受性的策略对于增强机体适应低氧环境的能力及防治缺血/缺氧性疾病具有重要意义。大量研究表明,预先给予机体一个短时间的较轻程度的缺血/缺氧刺激,能够显著提高机体对随后更严重缺氧的耐受能力,这种现象被称为缺血/缺氧预适应。近年来,缺血/缺氧预适应作为一种诱导神经内源性保护的策略,受到了广泛关注,成为当前生物医学领域中的研究前沿和热点之一。到目前为止,缺血/缺氧预适应已经在多种临床前模型中进行了研究,如缺血性卒中、神经退行性疾病等。缺血/缺氧预适应的保护机制复杂,涉及低氧信号通路激活、抗氧化应激、抗炎、抗凋亡等多种效应。本文就目前报道的缺血/缺氧预适应的主要机制、基础及临床研究进展进行综述,以阐明缺血/缺氧预适应的神经保护作用及应用潜力。
中图分类号:
吴剑, 谷亚坤, 刘佳. 缺血/缺氧预适应的神经保护作用研究进展[J]. 首都医科大学学报, 2020, 41(4): 664-670.
Wu Jian, Gu Yakun, Liu Jia. Research progresses in neuroprotective effects of ischemic/hypoxia preconditioning[J]. Journal of Capital Medical University, 2020, 41(4): 664-670.
| [1] | Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5):1124-1136. |
| [2] | Hausenloy D J and Yellon D M. Ischaemic conditioning and reperfusion injury[J]. Nat Rev Cardiol, 2016, 13(4):193-209. |
| [3] | McDonough A, Weinstein J R. The role of microglia in ischemic preconditioning[J]. Glia, 2020, 68(3):455-471. |
| [4] | Li C, Xu M, Wu Y, et al. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia:a randomized controlled study[J]. Anesthesiology, 2014, 121(2):249-259. |
| [5] | Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection:from hypoxia to ischemia[J]. Prog Neurobiol, 2017, 157:79-91. |
| [6] | Ekeloef S, Homilius M, Stilling M, et al. The effect of remote ischaemic preconditioning on myocardial injury in emergency hip fracture surgery (PIXIE trial):phase Ⅱ randomised clinical trial[J]. BMJ, 2019, 367:l6395. |
| [7] | Lee P, Chandel N S, Simon M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. (2020-05-14).. https://doi:10.1038/s41580-020-0227-y. |
| [8] | Zhu T, Zhan L, Liang D, et al. Hypoxia-inducible factor 1alpha mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J]. J Neuropathol Exp Neurol, 2014, 73(10):975-986. |
| [9] | Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease:beyond discovery and development[J]. Cell, 2019, 176(6):1248-1264. |
| [10] | Shao G, Gao C Y, Lu G W. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia[J]. Neurosignals, 2005, 14(5):255-261. |
| [11] | Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. (2020-05-14).. https://doi:10.1161/CIRCRESAHA.119.316463. |
| [12] | Joost H G, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators:nomenclature, sequence characteristics, and potential function of its novel members (review)[J]. Mol Membr Biol, 2001, 18(4):247-256. |
| [13] | Kuhrt D, Wojchowski D M. Emerging EPO and EPO receptor regulators and signal transducers[J]. Blood, 2015, 125(23):3536-3541. |
| [14] | Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:life with variable oxygen availability[J]. Annu Rev Physiol, 2007, 69:145-170. |
| [15] | Stenzel-Poore M P, Stevens S L, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia:similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states[J]. Lancet, 2003, 362(9389):1028-1037. |
| [16] | Divald A, Kivity S, Wang P, et al. Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits[J]. Circ Res, 2010, 106(12):1829-1838. |
| [17] | Bolanos J P, Almeida A, Moncada S. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends Biochem Sci, 2010, 35(3):145-149. |
| [18] | Sies H and Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol.(2020-03-30).. https://doi:10.1038/s41580-020-0230-3. |
| [19] | Bell K F, Al-Mubarak B, Fowler J H, et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning[J]. Proc Natl Acad Sci U S A, 2011, 108(1):E1-2; author reply E3-4. |
| [20] | Nadtochiy S M, Baker P R, Freeman B A, et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning:implications for cardioprotection[J]. Cardiovasc Res, 2009, 82(2):333-340. |
| [21] | Kannurpatti S S. Mitochondrial calcium homeostasis:implications for neurovascular and neurometabolic coupling[J]. J Cereb Blood Flow Metab, 2017, 37(2):381-395. |
| [22] | Sheng R, Liu X Q, Zhang L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3):310-325. |
| [23] | Azad P, Ryu J, Haddad G G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia[J]. Free Radic Biol Med, 2011, 51(2):530-538. |
| [24] | Shi K, Tian D C, Li Z G, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11):1058-1066. |
| [25] | Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke, 2009, 40(5):1849-1857. |
| [26] | Cui G H, Wu J, Mou F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668. |
| [27] | Sen E, Basu A, Willing L B, et al. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties[J]. ASN Neuro, 2011, 3(3):e00062. |
| [28] | Song W M, Colonna M. The identity and function of microglia in neurodegeneration[J]. Nat Immunol, 2018, 19(10):1048-1058. |
| [29] | Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J]. Mol Neurobiol, 2016, 53(2):1181-1194. |
| [30] | Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke[J]. Biomed Pharmacother, 2018, 105:518-525. |
| [31] | Bock F J, Tait S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100. |
| [32] | Miranda C, Fagundes D J, Miranda E, et al. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury[J]. Acta Cir Bras, 2019, 34(5):e201900501. |
| [33] | Olloquequi J, Cornejo-Cordova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders:therapeutic implications[J]. J Psychopharmacol, 2018, 32(3):265-275. |
| [34] | Magi S, Piccirillo S, Amoroso S. The dual face of glutamate:from a neurotoxin to a potential survival factor-metabolic implications in health and disease[J]. Cell Mol Life Sci, 2019, 76(8):1473-1488. |
| [35] | Fullana N, Gasull-Camos J, Tarres-Gatius M, et al. Astrocyte control of glutamatergic activity:downstream effects on serotonergic function and emotional behavior[J]. Neuropharmacology, 2020, 166:107914. |
| [36] | Gong J, Gong S, Zhang M, et al. Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats[J]. Amino Acids, 2014, 46(6):1537-1545. |
| [37] | Stavoe A K H, Holzbaur E L F. Autophagy in Neurons[J]. Annu Rev Cell Dev Biol, 2019, 35:477-500. |
| [38] | Park H K, Chu K, Jung K H, et al. Autophagy is involved in the ischemic preconditioning[J]. Neurosci Lett, 2009, 451(1):16-19. |
| [39] | Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice[J]. Nature, 2006, 441(7095):880-884. |
| [40] | Grotta J C. tPA for stroke:important progress in achieving faster treatment[J]. JAMA, 2014, 311(16):1615-1617. |
| [41] | Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia:from experimental strategies to clinical use[J]. Lancet Neurol, 2009, 8(4):398-412. |
| [42] | Emberson J, Lees K R, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958):1929-1935. |
| [43] | Wang W W, Chen D Z, Zhao M, et al. Prior transient ischemic attacks may have a neuroprotective effect in patients with ischemic stroke[J]. Arch Med Sci, 2017, 13(5):1057-1061. |
| [44] | Vellimana A K, Milner E, Azad T D, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke, 2011, 42:776-782. |
| [45] | Chan M T, Boet R, Ng S C, et al. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion[J]. Acta Neurochir Suppl, 2005, 95:93-96. |
| [46] | Sales A H A, Barz M, Bette S, et al. Impact of ischemic preconditioning on surgical treatment of brain tumors:a single-center, randomized, double-blind, controlled trial[J]. BMC Med, 2017, 15(1):137. |
| [47] | Manukhina E B, Downey H F, Shi X, et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease[J]. Exp Biol Med (Maywood), 2016, 241(12):1351-1363. |
| [48] | Zhang K, Zhao T, Huang X, et al. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia[J]. Neurobiol Dis, 2014, 64:66-78. |
| [49] | Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity[J]. J Mol Neurosci, 2013, 49(1):105-115. |
| [50] | Mazumdar J, O'Brien W T, Johnson R S, et al. O2 regulates stem cells through Wnt/beta-catenin signalling[J]. Nat Cell Biol, 2010, 12(10):1007-1013. |
| [51] | Vaughn C B, Jakimovski D, Kavak K S, et al. Epidemiology and treatment of multiple sclerosis in elderly populations[J]. Nat Rev Neurol, 2019, 15(6):329-342. |
| [52] | Faissner S, Plemel J R, Gold R, et al. Progressive multiple sclerosis:from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18(12):905-922. |
| [53] | Van Kaer L, Postoak J L, Wang C, et al. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE[J]. Cell Mol Immunol, 2019, 16(6):531-539. |
| [54] | Esen N, Katyshev V, Serkin Z, et al. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE[J]. J Neuroinflammation, 2016, 13:13. |
| [55] | Halder S K, Kant R, and Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels[J]. Acta Neuropathol Commun, 2018, 6(1):86. |
| [56] | Prosser-Loose E J, Hassan A, Mitchell G S, et al. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury[J]. J Neurotrauma, 2015, 32(18):1403-1412. |
| [57] | Wei L, Fraser J L, Lu Z Y, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats[J]. Neurobiol Dis, 2012, 46(3):635-645. |
| [58] | Oh J S, Ha Y, An S S, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J]. Neurosci Lett, 2010, 472(3):215-219. |
| [1] | 郭宇, 陈伟观, 周三连, 汤莉巧, 孙王妍, 张冬梅, 卢红建. 急性缺血性脑卒中患者血清糖蛋白非转移性黑色素瘤蛋白B蛋白浓度与疾病严重度及预后的相关性分析[J]. 首都医科大学学报, 2025, 46(4): 702-709. |
| [2] | 江雪, 鱼盼盼, 曾翔俊, 郭彩霞. 基于蛋白质组学揭示可溶性糖基化终末产物受体对缺血/再灌注心肌组织蛋白变化及功能的影响[J]. 首都医科大学学报, 2025, 46(3): 503-510. |
| [3] | 李清, 赵潇雯, 任敬, 余淼, 崔瀚方, 丁芳园, 刘昊, 李琼, 王凡, 李青, 陈希妍, 路承彪, 李少敏, 赵建华. 血清缺氧诱导因子-1α浓度与脑微出血及认知功能障碍的相关性[J]. 首都医科大学学报, 2025, 46(2): 216-227. |
| [4] | 景娇, 张思瑶, 刘艳伶, 王芬, 肖伟, 王振中. 银杏二萜内酯葡胺注射液对有无大动脉粥样硬化型急性缺血性脑卒中患者的有效性研究[J]. 首都医科大学学报, 2025, 46(2): 228-233. |
| [5] | 字晓慧, 夏雪, 李静, 张晓丽, 周全, 王安心, 王伊龙. 抗血小板治疗在静脉溶栓卒中患者中的应用研究进展[J]. 首都医科大学学报, 2025, 46(2): 234-242. |
| [6] | 伍琳, 孙君昭, 韩铖琛, 聂幸幸, 田宇红, 皮红英. 远端缺血适应对自发性脑出血患者的应用效果观察 [J]. 首都医科大学学报, 2025, 46(2): 356-362. |
| [7] | 董 晓, 张婉莹, 吉训明, 吴川杰. 《2024年美国心脏学会/美国卒中学会卒中一级预防指南》概述[J]. 首都医科大学学报, 2025, 46(1): 1-5. |
| [8] | 褚学红, 申英杰, 王耀楼, 董 晓, 刘圆圆, 冯 艳, 姜缪文, 李 明, 吉训明, 吴川杰. 基于孟德尔随机化探索广泛的血管周围间隙负荷与缺血性卒中及其亚型和短暂性脑缺血发作的因果关系[J]. 首都医科大学学报, 2025, 46(1): 22-33. |
| [9] | 王银平, 孟灿灿, 吴文娟, 杨直堂. CD62P、CD40L及节律核受体Rev-erbα在缺血性脑卒中不同发病时间的表达[J]. 首都医科大学学报, 2025, 46(1): 34-40. |
| [10] | 詹艳丽, 李一吟, 李 平, 孙景萍, 黄良通, 蔡学礼. 基于区域卒中分级诊疗网络救治急性缺血性脑卒中的现状及疗效分析[J]. 首都医科大学学报, 2025, 46(1): 41-47. |
| [11] | 杨 笑, 孟媛媛, 杨靖仪, 王书函, 张立功. 血浆致动脉粥样硬化指数、三酰甘油-葡萄糖指数、脑小血管病影像学标志物对急性缺血性脑卒中患者静脉溶栓早期神经功能恢复的预测价值 [J]. 首都医科大学学报, 2025, 46(1): 48-55. |
| [12] | 张 萌, 马咏馨, 贾 琼, 张东威, 张昕红, 徐耀铭. 静脉溶栓治疗急性轻型非致残性缺血性脑卒中有效性和安全性的临床观察:一项单中心回顾性观察研究[J]. 首都医科大学学报, 2025, 46(1): 56-62. |
| [13] | 乔 玥, 李传辉, 赵文博. 急性缺血性脑卒中的再灌注治疗的现状与未来[J]. 首都医科大学学报, 2025, 46(1): 68-70. |
| [14] | 崔 玮, 庞淇丹, 相韩悦, 肖 猱, 姜德春, 李 深, 沈光莉. 利用BIBP-H荧光探针进行脑缺血再灌注损伤检测[J]. 首都医科大学学报, 2025, 46(1): 76-82. |
| [15] | 安 琪, 杨 楠, 朱玥荃, 师文娟, 黄敏琪, 赵咏梅. 自噬抑制剂3-MA对脑缺血再灌注损伤大鼠脑内炎症反应的影响[J]. 首都医科大学学报, 2024, 45(6): 1008-1015. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||